-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMOPS.C
1215 lines (1081 loc) · 30.6 KB
/
MOPS.C
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* mops.c
*
* This file is part of Emu42
*
* Copyright (C) 2004 Christoph Gießelink
*
*/
#include "pch.h"
#include "Emu42.h"
#include "ops.h"
#include "opcodes.h"
#include "io.h"
// #define DEBUG_IO // switch for I/O debug purpose
// #define DEBUG_MEMACC // switch for MEMORY access debug purpose
// defines for MODE register
#define LEWIS_MASTER 0x0
#define LEWIS_SLAVE 0x5
// defines for reading an open data bus
#define READEVEN 0x0A
#define READODD 0x03
// CRC calculation
static WORD crc_table[] =
{
0x0000, 0x6801, 0xD002, 0xB803, 0xC805, 0xA004, 0x1807, 0x7006,
0xF80B, 0x900A, 0x2809, 0x4008, 0x300E, 0x580F, 0xE00C, 0x880D
};
WORD UpCRC(WORD wCRC, BYTE nib)
{
return ((wCRC << 4) | nib) ^ crc_table[wCRC >> 12];
}
static __inline UINT MIN(UINT a, UINT b)
{
return (a<b)?a:b;
}
static __inline UINT MAX(UINT a, UINT b)
{
return (a>b)?a:b;
}
static __inline VOID NunpackCRC(BYTE *a, DWORD b, UINT s, BOOL bUpdate)
{
UINT i;
for (i = 0; i < s; ++i)
{
a[i] = (BYTE)(b&0xf);
if (bUpdate)
{
Chipset.crc = UpCRC(Chipset.crc,a[i]);
ChipsetS.crc = UpCRC(ChipsetS.crc,0);
}
b>>=4;
}
}
// port mapping
LPBYTE RMap[1<<PAGE_BITS] = {NULL,};
LPBYTE WMap[1<<PAGE_BITS] = {NULL,};
static VOID ReadSacajaweaIO(BYTE *a, DWORD d, DWORD s, BOOL bUpdate);
static VOID WriteSacajaweaIO(BYTE *a, DWORD d, DWORD s);
static VOID ReadLewisIO(BYTE *a, DWORD b, DWORD s, BOOL bUpdate);
static VOID WriteLewisIO(BYTE *a, DWORD b, DWORD s);
static VOID ReadLewisSlaveIO(BYTE *a, DWORD d, DWORD s, BOOL bUpdate);
static VOID WriteLewisSlaveIO(BYTE *a, DWORD d, DWORD s);
// function pointer for IO memory access
static VOID (*ReadIO)(BYTE *a, DWORD d, DWORD s, BOOL bUpdate) = NULL;
static VOID (*WriteIO)(BYTE *a, DWORD d, DWORD s) = NULL;
// values for chip enables
enum NCEPORT
{
MASTER_NROM = 0,
MASTER_NCE2,
MASTER_NCE3,
MASTER_NDISP,
SLAVE_NROM,
SLAVE_NCE2,
SLAVE_NCE3,
SLAVE_NDISP
};
typedef struct
{
DWORD *pdwBase; // base address
DWORD *pdwMask; // don't care mask
DWORD *pdwSize; // real size of module in Nibbles
LPBYTE *ppNCE; // pointer to memory
} NCEDATA;
static LPBYTE pbyNull = NULL; // for ROM mapping
// references to the display/timer area for mapping
static DWORD dwMasterDispSize = sizeof(Chipset.IORam);
static LPBYTE pbyMasterDisp = Chipset.IORam;
static DWORD dwSlaveDispSize = sizeof(ChipsetS.IORam);
static LPBYTE pbySlaveDisp = ChipsetS.IORam;
static const NCEDATA NCE[] =
{
{ &Chipset.RomBase, &Chipset.RomMask, &Chipset.RomSize, &pbyNull },
{ &Chipset.NCE2Base, &Chipset.NCE2Mask, &Chipset.NCE2Size, &mNCE2 },
{ &Chipset.NCE3Base, &Chipset.NCE3Mask, &Chipset.NCE3Size, &mNCE3 },
{ &Chipset.DispBase, &Chipset.DispMask, &dwMasterDispSize, &pbyMasterDisp },
{ &ChipsetS.RomBase, &ChipsetS.RomMask, &ChipsetS.RomSize, &pbyNull },
{ &ChipsetS.NCE2Base, &ChipsetS.NCE2Mask, &ChipsetS.NCE2Size, &sNCE2 },
{ &ChipsetS.NCE3Base, &ChipsetS.NCE3Mask, &ChipsetS.NCE3Size, &sNCE3 },
{ &ChipsetS.DispBase, &ChipsetS.DispMask, &dwSlaveDispSize, &pbySlaveDisp }
};
static VOID MapNCE(enum NCEPORT s, WORD a, WORD b, DWORD *pdwRomOff)
{
LPBYTE pbyRomPage;
UINT i, uAddr, uMask;
DWORD p, m;
_ASSERT(s >= 0 && s < ARRAYSIZEOF(NCE));
// n-island mask = don't care? or no chip connected
if (!(*NCE[s].pdwMask && *NCE[s].pdwSize))
return;
if (*NCE[s].ppNCE == NULL) // module is ROM
{
if (*pdwRomOff >= dwRomSize) // ROM file not big enough
return; // no mapping
pbyRomPage = pbyRom + *pdwRomOff; // base for ROM access
*pdwRomOff += *NCE[s].pdwSize; // offset in file for next ROM module
}
uAddr = *NCE[s].pdwBase >> ADDR_BITS; // base address in pages
uMask = *NCE[s].pdwMask >> ADDR_BITS; // address mask in pages
a = (WORD)MAX(a,uAddr);
b = (WORD)MIN(b,(*NCE[s].pdwBase + (~*NCE[s].pdwMask & 0xFFFFF)) >> ADDR_BITS);
m = *NCE[s].pdwSize - 1;
p = (a << ADDR_BITS) & m; // offset to begin in nibbles
for (i = a; i <= b; ++i)
{
if (((i ^ uAddr) & uMask) == 0) // mapping area may have holes
{
if (*NCE[s].ppNCE) // module is RAM
{
RMap[i] = *NCE[s].ppNCE + p;
WMap[i] = *NCE[s].ppNCE + p;
}
else // module is ROM
{
_ASSERT(pbyRomPage); // ROM page defined
RMap[i] = pbyRomPage + p;
}
}
p = (p + ADDR_SIZE) & m;
}
return;
}
VOID InitIO(VOID)
{
_ASSERT(nCurrentHardware != HDW_UNKNOWN);
if (nCurrentHardware == HDW_LEWIS)
{
_ASSERT(nCurrentHardware == HDW_LEWIS);
ReadIO = ReadLewisIO;
WriteIO = WriteLewisIO;
}
else // Sacajavea
{
_ASSERT(nCurrentHardware == HDW_SACA);
ReadIO = ReadSacajaweaIO;
WriteIO = WriteSacajaweaIO;
}
return;
}
VOID Map(WORD a, WORD b) // maps 512 byte pages
{
UINT i;
DWORD dwOffset = 0; // ROM file offset
for (i = a; i <= b; ++i) // clear area
{
RMap[i] = NULL;
WMap[i] = NULL;
}
MapNCE(MASTER_NROM,a,b,&dwOffset); // ROM (master)
if (Chipset.bSlave) // slave chip
{
MapNCE(SLAVE_NROM,a,b,&dwOffset); // ROM (slave)
}
MapNCE(MASTER_NCE2,a,b,&dwOffset); // Memory Controller 1 (master)
MapNCE(MASTER_NCE3,a,b,&dwOffset); // Memory Controller 2 (master)
MapNCE(MASTER_NDISP,a,b,&dwOffset); // Display/Timer (master)
if (Chipset.bSlave) // slave chip
{
MapNCE(SLAVE_NCE2,a,b,&dwOffset); // Memory Controller 1 (slave)
MapNCE(SLAVE_NCE3,a,b,&dwOffset); // Memory Controller 2 (slave)
MapNCE(SLAVE_NDISP,a,b,&dwOffset); // Display/Timer (slave)
}
return;
}
////////////////////////////////////////////////////////////////////////////////
//
// Bus Commands
//
////////////////////////////////////////////////////////////////////////////////
VOID Config() // configure modules in fixed order
{
return;
}
VOID Uncnfg()
{
return;
}
VOID Reset()
{
return;
}
VOID C_Eq_Id()
{
memset(Chipset.C, 0, 5); // clear C[A]
return;
}
static VOID ChipResetMaster(VOID)
{
StopTimers(MASTER); // stop timer
StopDisplay(); // stop display
Chipset.pc = 0;
Chipset.rstkp = 0;
ZeroMemory(Chipset.rstk,sizeof(Chipset.rstk));
Chipset.HST = 0;
Chipset.SoftInt = FALSE;
Chipset.Shutdn = TRUE;
Chipset.inte = TRUE; // enable interrupts
Chipset.intk = TRUE; // INTON
Chipset.intd = FALSE; // no keyboard interrupts pending
Chipset.crc = 0;
ZeroMemory(Chipset.IORam,sizeof(Chipset.IORam));
if (nCurrentHardware == HDW_LEWIS)
Chipset.IORam[RATECTL] = 7; // CPU speed
Chipset.IORam[LPE] = RST; // set ReSeT bit at hardware reset
Chipset.t1 = 0; // reset timer values
Chipset.t2 = 0;
UpdateContrast(); // update contrast
return;
}
static VOID ChipResetSlave(VOID)
{
StopTimers(SLAVE); // stop timer
ChipsetS.bLcdSyncErr = TRUE; // preset display with synchronization error
ChipsetS.crc = 0;
ZeroMemory(ChipsetS.IORam,sizeof(ChipsetS.IORam));
ChipsetS.IORam[RATECTL] = 7; // CPU speed
ChipsetS.IORam[LPE] = RST; // set ReSeT bit at hardware reset
ChipsetS.t1 = 0; // reset timer values
ChipsetS.t2 = 0;
return;
}
VOID CpuReset(VOID) // register setting after Cpu Reset
{
ChipResetMaster(); // reset master chip
if (Chipset.bSlave) // 2nd display controller
{
ChipResetSlave(); // reset slave chip
}
return;
}
enum MMUMAP MapData(DWORD d) // check MMU area
{
// if (Chipset.RegMask && ((d ^ Chipset.RegBase) & Chipset.RegMask) == 0) return M_REG;
if (Chipset.DispMask && ((d ^ Chipset.DispBase) & Chipset.DispMask) == 0) return M_DISP;
if (Chipset.NCE2Mask && ((d ^ Chipset.NCE2Base) & Chipset.NCE2Mask) == 0) return M_NCE2;
if (Chipset.NCE3Mask && ((d ^ Chipset.NCE3Base) & Chipset.NCE3Mask) == 0) return M_NCE3;
if (Chipset.RomMask && ((d ^ Chipset.RomBase) & Chipset.RomMask) == 0) return M_ROM;
// if (ChipsetS.RegMask && ((d ^ ChipsetS.RegBase) & ChipsetS.RegMask) == 0) return M_REGS;
if (ChipsetS.DispMask && ((d ^ ChipsetS.DispBase) & ChipsetS.DispMask) == 0) return M_DISPS;
if (ChipsetS.NCE2Mask && ((d ^ ChipsetS.NCE2Base) & ChipsetS.NCE2Mask) == 0) return M_NCE2S;
if (ChipsetS.NCE3Mask && ((d ^ ChipsetS.NCE3Base) & ChipsetS.NCE3Mask) == 0) return M_NCE3S;
if (ChipsetS.RomMask && ((d ^ ChipsetS.RomBase) & ChipsetS.RomMask) == 0) return M_ROMS;
return M_NONE;
}
static VOID NreadEx(BYTE *a, DWORD d, UINT s, BOOL bUpdate)
{
enum MMUMAP eMap;
DWORD u, v;
UINT c;
BYTE *p;
#if defined DEBUG_MEMACC
{
TCHAR buffer[256];
wsprintf(buffer,_T("%.5lx: Mem %s : %02x,%u\n"),
Chipset.pc,(bUpdate) ? _T("read") : _T("peek"),d,s);
OutputDebugString(buffer);
}
#endif
do
{
eMap = MapData(d); // get active memory controller
do
{
if (M_DISP == eMap) // display/timer/control registers (master)
{
v = d & (sizeof(Chipset.IORam)-1);
c = MIN(s,sizeof(Chipset.IORam)-v);
ReadIO(a,v,c,bUpdate);
break;
}
if (M_DISPS == eMap) // display/timer/control registers (slave)
{
v = d & (sizeof(ChipsetS.IORam)-1);
c = MIN(s,sizeof(ChipsetS.IORam)-v);
ReadLewisSlaveIO(a,v,c,bUpdate);
break;
}
u = d >> ADDR_BITS;
v = d & (ADDR_SIZE-1);
c = MIN(s,ADDR_SIZE-v);
if ((p=RMap[u]) != NULL) // module mapped
{
memcpy(a, p+v, c);
}
// simulate open data bus
else // open data bus
{
if (M_NONE != eMap) // open data bus
{
for (u=0; u<c; ++u) // fill all nibbles
{
if ((v+u) & 1) // odd address
a[u] = READODD;
else // even address
a[u] = READEVEN;
}
}
else
{
memset(a, 0x00, c); // fill with 0
}
}
if (bUpdate)
{
for (u=0; u<c; u++) // update CRC
{
Chipset.crc = UpCRC(Chipset.crc,a[u]);
ChipsetS.crc = UpCRC(ChipsetS.crc,0);
}
}
}
while (0);
if (s-=c) {a+=c; d=(d+c)&0xFFFFF;}
} while (s);
return;
}
__forceinline VOID Npeek(BYTE *a, DWORD d, UINT s)
{
NreadEx(a, d, s, FALSE);
return;
}
__forceinline VOID Nread(BYTE *a, DWORD d, UINT s)
{
NreadEx(a, d, s, TRUE);
return;
}
VOID Nwrite(BYTE *a, DWORD d, UINT s)
{
enum MMUMAP eMap;
DWORD u, v;
UINT c;
BYTE *p;
#if defined DEBUG_MEMACC
{
TCHAR buffer[256];
wsprintf(buffer,_T("%.5lx: Mem write: %02x,%u\n"),Chipset.pc,d,s);
OutputDebugString(buffer);
}
#endif
do
{
eMap = MapData(d); // get active memory controller
do
{
if (M_DISP == eMap) // display/timer/control registers (master)
{
v = d & (sizeof(Chipset.IORam)-1);
c = MIN(s,sizeof(Chipset.IORam)-v);
WriteIO(a, v, c);
break;
}
if (M_DISPS == eMap) // display/timer/control registers (slave)
{
v = d & (sizeof(ChipsetS.IORam)-1);
c = MIN(s,sizeof(ChipsetS.IORam)-v);
WriteLewisSlaveIO(a, v, c);
break;
}
u = d >> ADDR_BITS;
v = d & (ADDR_SIZE-1);
c = MIN(s,ADDR_SIZE-v);
if ((p=WMap[u]) != NULL) memcpy(p+v, a, c);
}
while (0);
a+=c;
d=(d+c)&0xFFFFF;
} while (s-=c);
return;
}
DWORD Read5(DWORD d)
{
BYTE p[5];
Npeek(p,d,5);
return Npack(p,5);
}
BYTE Read2(DWORD d)
{
BYTE p[2];
Npeek(p,d,2);
return (BYTE)(p[0]|(p[1]<<4));
}
VOID Write5(DWORD d, DWORD n)
{
BYTE p[5];
Nunpack(p,n,5);
Nwrite(p,d,5);
return;
}
VOID Write2(DWORD d, BYTE n)
{
BYTE p[2];
Nunpack(p,n,2);
Nwrite(p,d,2);
return;
}
VOID IOBit(BYTE *d, BYTE b, BOOL s) // set/clear bit in I/O section
{
EnterCriticalSection(&csIOLock);
{
if (s)
*d |= b; // set bit
else
*d &= ~b; // clear bit
}
LeaveCriticalSection(&csIOLock);
return;
}
static DWORD ReadT2Acc(enum CHIP eChip)
{
static DWORD dwCyc[2] = { 0, 0 }; // CPU cycle counter at last timer2 read access
DWORD dwCycDif;
// CPU cycles since last call
dwCycDif = (DWORD) (Chipset.cycles & 0xFFFFFFFF) - dwCyc[eChip];
dwCyc[eChip] = (DWORD) (Chipset.cycles & 0xFFFFFFFF);
// maybe CPU speed measurement, slow down the next 10 CPU opcodes
if (dwCycDif < 150)
{
EnterCriticalSection(&csSlowLock);
{
InitAdjustSpeed(); // init variables if necessary
nOpcSlow = 10; // slow down next 10 opcodes
}
LeaveCriticalSection(&csSlowLock);
}
return ReadT2(eChip);
}
// Sacajawea
static VOID ReadSacajaweaIO(BYTE *a, DWORD d, DWORD s, BOOL bUpdate)
{
BOOL bLBI,bVLBI;
#if defined DEBUG_IO
{
TCHAR buffer[256];
wsprintf(buffer,_T("%.5lx: IO read : %02x,%u\n"),Chipset.pc,d,s);
OutputDebugString(buffer);
}
#endif
do
{
switch (d)
{
case 0x304: *a = (Chipset.crc )&0xF; break;
case 0x305: *a = (Chipset.crc>> 4)&0xF; break;
case 0x306: *a = (Chipset.crc>> 8)&0xF; break;
case 0x307: *a = (Chipset.crc>>12)&0xF; break;
case 0x308:
// battery measurement is active because CPU is running
GetBatteryState(&bLBI,&bVLBI); // get battery state
// set IO bits
IOBit(&Chipset.IORam[d],LBI,bLBI);
IOBit(&Chipset.IORam[d],VLBI,bVLBI);
*a = Chipset.IORam[d];
if (bUpdate) // modify enabled
{
// GRAM is cleared after reading
IOBit(&Chipset.IORam[d],GRAM,FALSE);
}
break;
case 0x309:
*a = Chipset.IORam[d];
if (bUpdate) // modify enabled
{
Chipset.IORam[d] &= ~RST; // clear RST bit after reading
}
break;
case 0x30F:
ReadT2(MASTER); // dummy read for update timer2 control register
*a = Chipset.IORam[d];
break;
case 0x3FA: NunpackCRC(a, ReadT2Acc(MASTER) , s, bUpdate); return;
case 0x3FB: NunpackCRC(a, ReadT2Acc(MASTER)>> 4, s, bUpdate); return;
case 0x3FC: NunpackCRC(a, ReadT2Acc(MASTER)>> 8, s, bUpdate); return;
case 0x3FD: NunpackCRC(a, ReadT2Acc(MASTER)>>12, s, bUpdate); return;
case 0x3FE: NunpackCRC(a, ReadT2Acc(MASTER)>>16, s, bUpdate); return;
case 0x3FF: NunpackCRC(a, ReadT2Acc(MASTER)>>20, s, bUpdate); return;
default:
if (d > PROW_END && d < CONTRAST) // undefined area 1
{
*a = 0;
break;
}
if (d > TIMERCTL && d < TIMER) // undefined area 2
{
*a = 3;
break;
}
*a = Chipset.IORam[d];
}
// the first 3 nibbles of the master CRC do not update the master CRC itself
if (bUpdate && (d < CRC || d > CRC + 2))
Chipset.crc = UpCRC(Chipset.crc,*a);
d++; a++;
} while (--s);
return;
}
static VOID WriteSacajaweaIO(BYTE *a, DWORD d, DWORD s)
{
BYTE c;
#if defined DEBUG_IO
{
TCHAR buffer[256];
DWORD j;
int i;
i = wsprintf(buffer,_T("%.5lx: IO write: %02x,%u = "),Chipset.pc,d,s);
for (j = 0;j < s;++j,++i)
{
buffer[i] = a[j];
if (buffer[i] > 9) buffer[i] += _T('a') - _T('9') - 1;
buffer[i] += _T('0');
}
buffer[i++] = _T('\n');
buffer[i] = 0;
OutputDebugString(buffer);
}
#endif
do
{
c = *a;
switch (d)
{
// 00301 = CONTRAST
// 00301 @ Contrast Control [CONT3 CONT2 CONT1 CONT0]
// 00301 @ Higher value = darker screen
case 0x301:
if (c!=Chipset.IORam[d])
{
Chipset.IORam[d]=c;
UpdateContrast();
}
break;
// 00303 = CTRL
// 00303 @ CONTROL [DON SDAT VLBIS BIN]
case 0x303:
c &= ~BIN; // Burn IN bit is read only, normally cleared
if ((c^Chipset.IORam[d]) != 0) // content changed
{
// DON bit changed?
BOOL bDON = ((c ^ Chipset.IORam[d]) & DON) != 0;
Chipset.IORam[d] = c; // new setting
if (bDON) // DON bit changed
{
if ((c & DON) != 0) // set display on
{
StartDisplay(); // start display update
}
else // display is off
{
StopDisplay(); // stop display update
}
}
}
break;
// 00304 = HP:CRC
// 00304 @ 16 bit hardware CRC (304-307)
case 0x304: Chipset.crc = (Chipset.crc&0xfff0)|(c*0x0001); break;
case 0x305: Chipset.crc = (Chipset.crc&0xff0f)|(c*0x0010); break;
case 0x306: Chipset.crc = (Chipset.crc&0xf0ff)|(c*0x0100); break;
case 0x307: Chipset.crc = (Chipset.crc&0x0fff)|(c*0x1000); break;
// 00308 = LPD
// 00308 @ Low Power Detection [GRAM VRAM VLBI LBI]
case 0x308:
// VLBI and LBI are read only (controlled by LowBat thread)
IOBit(&Chipset.IORam[d],GRAM,(c & GRAM) != 0);
IOBit(&Chipset.IORam[d],VRAM,(c & VRAM) != 0);
// chip reset condition?
if ( (Chipset.IORam[LPD] & GRAM) != 0
&& (Chipset.IORam[LPE] & EGRAM) != 0)
{
ChipResetMaster(); // reset master chip
bInterrupt = TRUE; // leave execution loop for shut down
}
break;
// 00309 = LPE
// 00309 @ Low Power Detection [EGRAM EVRAM EVLBI RST]
case 0x309:
Chipset.IORam[d] = c;
// chip reset condition?
if ( (Chipset.IORam[LPD] & GRAM) != 0
&& (Chipset.IORam[LPE] & EGRAM) != 0)
{
ChipResetMaster(); // reset master chip
bInterrupt = TRUE; // leave execution loop for shut down
}
break;
// 0030F = NS:TIMERCTL
// 0030F @ TIMER Control [SRQ WKE INT RUN]
case 0x30F:
Chipset.IORam[d]=c;
ReadT2(MASTER); // dummy read for checking control bits
if (c&1)
{
StartTimers(MASTER); // start timer
}
else
{
StopTimers(MASTER); // stops timer
}
break;
// 003FA = HP:TIMER
// 003FA @ hardware timer (3A-3F), decremented 8192 times/s
// nothing - fall through to default
default:
Chipset.IORam[d]=c; // write data
if (d >= TIMER) // timer update
{
Nunpack(Chipset.IORam+TIMER, ReadT2(MASTER), 6);
memcpy(Chipset.IORam+d, a, s);
SetT2(MASTER,Npack(Chipset.IORam+TIMER, 6));
return;
}
}
a++; d++;
} while (--s);
return;
}
// Lewis
static VOID ReadLewisIO(BYTE *a, DWORD d, DWORD s, BOOL bUpdate)
{
BOOL bLBI,bVLBI;
#if defined DEBUG_IO
{
TCHAR buffer[256];
wsprintf(buffer,_T("%.5lx: IO read : %02x,%u\n"),Chipset.pc,d,s);
OutputDebugString(buffer);
}
#endif
do
{
switch (d)
{
case 0x304: *a = (Chipset.crc )&0xF; break;
case 0x305: *a = (Chipset.crc>> 4)&0xF; break;
case 0x306: *a = (Chipset.crc>> 8)&0xF; break;
case 0x307: *a = (Chipset.crc>>12)&0xF; break;
case 0x308:
// battery measurement is active because CPU is running
GetBatteryState(&bLBI,&bVLBI); // get battery state
// set IO bits
IOBit(&Chipset.IORam[d],LBI,bLBI);
IOBit(&Chipset.IORam[d],VLBI,bVLBI);
*a = Chipset.IORam[d];
if (bUpdate) // modify enabled
{
// GRAM is cleared after reading
IOBit(&Chipset.IORam[d],GRAM,FALSE);
}
break;
case 0x309:
*a = Chipset.IORam[d];
if (bUpdate) // modify enabled
{
Chipset.IORam[d] &= ~RST; // clear RST bit after reading
}
break;
case 0x30A:
*a = LEWIS_MASTER; // master chip
break;
case 0x30C:
*a = RX; // RX-Line always high
break;
case 0x30E:
ReadT1(MASTER); // dummy read for update timer1 control register
*a = Chipset.IORam[d];
break;
case 0x30F:
ReadT2(MASTER); // dummy read for update timer2 control register
*a = Chipset.IORam[d];
break;
case 0x3F7: *a = ReadT1(MASTER); break;
case 0x3F8: NunpackCRC(a, ReadT2Acc(MASTER) , s, bUpdate); return;
case 0x3F9: NunpackCRC(a, ReadT2Acc(MASTER)>> 4, s, bUpdate); return;
case 0x3FA: NunpackCRC(a, ReadT2Acc(MASTER)>> 8, s, bUpdate); return;
case 0x3FB: NunpackCRC(a, ReadT2Acc(MASTER)>>12, s, bUpdate); return;
case 0x3FC: NunpackCRC(a, ReadT2Acc(MASTER)>>16, s, bUpdate); return;
case 0x3FD: NunpackCRC(a, ReadT2Acc(MASTER)>>20, s, bUpdate); return;
case 0x3FE: NunpackCRC(a, ReadT2Acc(MASTER)>>24, s, bUpdate); return;
case 0x3FF: NunpackCRC(a, ReadT2Acc(MASTER)>>28, s, bUpdate); return;
default:
if (d > DAREA_END && d < RATECTL) // undefined area 1
{
*a = 0;
break;
}
if (d > TIMERCTL_2 && d < TIMER1) // undefined area 2
{
*a = 3;
break;
}
*a = Chipset.IORam[d];
}
ChipsetS.crc = UpCRC(ChipsetS.crc,0); // slave CRC update
// the first 3 nibbles of the master CRC do not update the master CRC itself
if (bUpdate && (d < CRC || d > CRC + 2))
Chipset.crc = UpCRC(Chipset.crc,*a);
d++; a++;
} while (--s);
return;
}
static VOID WriteLewisIO(BYTE *a, DWORD d, DWORD s)
{
BYTE c;
BOOL bAnnunciator = FALSE; // no annunciator access
#if defined DEBUG_IO
{
TCHAR buffer[256];
DWORD j;
int i;
i = wsprintf(buffer,_T("%.5lx: IO write: %02x,%u = "),Chipset.pc,d,s);
for (j = 0;j < s;++j,++i)
{
buffer[i] = a[j];
if (buffer[i] > 9) buffer[i] += _T('a') - _T('9') - 1;
buffer[i] += _T('0');
}
buffer[i++] = _T('\n');
buffer[i] = 0;
OutputDebugString(buffer);
}
#endif
do
{
c = *a;
switch (d)
{
// 00300 = RATECTL
// 00300 @ Rate Control
// 00300 @ CPU Frequency = (RATE+1) * 524288Hz, Strobe rate = Frequency / 4
case 0x300:
// CPU speed depending on RATECTL content
dwCyclesRate = (dwLewisCycles * (c + 1) + 4) / 8;
Chipset.IORam[d]=c;
break;
// 00301 = CONTRAST
// 00301 @ Contrast Control [CONT3 CONT2 CONT1 CONT0]
// 00301 @ Higher value = darker screen
case 0x301:
if (c!=Chipset.IORam[d])
{
Chipset.IORam[d]=c;
UpdateContrast();
}
break;
// 00303 = DSPCTL
// 00303 @ Display control + BIN [DON SDAT CONT4 BIN]
// 00303 @ 1 nib for display contrast MSB, DON=Display ON
case 0x303:
c &= ~BIN; // Burn IN bit is read only, normally cleared
if ((c^Chipset.IORam[d])&DON) // DON bit changed
{
if ((c & DON) != 0) // set display on
{
// DON bit of slave not set
ChipsetS.bLcdSyncErr = (Chipset.bSlave && !(ChipsetS.IORam[DSPCTL]&DON));
Chipset.IORam[d] |= DON;
StartDisplay(); // start display update
}
else // display is off
{
Chipset.IORam[d] &= ~DON;
StopDisplay(); // stop display update
}
UpdateContrast();
}
// CONT4 bit changed
if ((c^Chipset.IORam[d]) & CONT4)
{
Chipset.IORam[d]=c;
UpdateContrast();
}
Chipset.IORam[d] = c;
break;
// 00304 = HP:CRC
// 00304 @ 16 bit hardware CRC (304-307)
case 0x304: Chipset.crc = (Chipset.crc&0xfff0)|(c*0x0001); break;
case 0x305: Chipset.crc = (Chipset.crc&0xff0f)|(c*0x0010); break;
case 0x306: Chipset.crc = (Chipset.crc&0xf0ff)|(c*0x0100); break;
case 0x307: Chipset.crc = (Chipset.crc&0x0fff)|(c*0x1000); break;
// 00308 = LPD
// 00308 @ Low Power Detection [GRAM VRAM VLBI LBI]
case 0x308:
// VLBI and LBI are read only (controlled by LowBat thread)
IOBit(&Chipset.IORam[d],GRAM,(c & GRAM) != 0);
IOBit(&Chipset.IORam[d],VRAM,(c & VRAM) != 0);
// chip reset condition?
if ( (Chipset.IORam[LPD] & GRAM) != 0
&& (Chipset.IORam[LPE] & EGRAM) != 0)
{
ChipResetMaster(); // reset master chip
bInterrupt = TRUE; // leave execution loop for shut down
}
break;
// 00309 = LPE
// 00309 @ Low Power Detection Enable [EGRAM EVRAM EVLBI RST]
case 0x309:
Chipset.IORam[d] = c;
// chip reset condition?
if ( (Chipset.IORam[LPD] & GRAM) != 0
&& (Chipset.IORam[LPE] & EGRAM) != 0)
{
ChipResetMaster(); // reset master chip
bInterrupt = TRUE; // leave execution loop for shut down
}
break;
// 0030C = INPORT
// 0030C @ Input Port [RX SREQ ST1 ST0]
case 0x30C:
if (c & SREQ) // SREQ bit set
{
c &= ~SREQ; // clear SREQ bit
Chipset.SoftInt = TRUE;
bInterrupt = TRUE;
}
Chipset.IORam[d]=c;
break;
// 0030D = LEDOUT
// 0030D @ LED output [UREG EPD STL DRL]
case 0x30D:
if ((c^Chipset.IORam[d]) & STL) // STL bit changed
{
IrPrinter((BYTE)(c & STL));
}
Chipset.IORam[d]=c;
break;
// 0030E = NS:TIMER1CTL
// 0030E @ TIMER1 Control [SRQ WKE INT XTRA]
case 0x30E:
Chipset.IORam[d]=c; // don't clear XTRA bit
ReadT1(MASTER); // dummy read for checking control bits
break;
// 0030F = NS:TIMER2CTL
// 0030F @ TIMER2 Control [SRQ WKE INT RUN]
case 0x30F:
Chipset.IORam[d]=c;
ReadT2(MASTER); // dummy read for checking control bits
if (c&1)
{
StartTimers(MASTER); // start the master timer
StartTimers(SLAVE); // is there a waiting slave timer, if so start
}
else
{
StopTimers(SLAVE); // master timer stops also slave timer
StopTimers(MASTER); // now stops the master
}
break;
// 003F7 = HP:TIMER1
// 003F7 @ Decremented 16 times/s
case 0x3F7:
SetT1(MASTER,c); // set new value
break;
// 003F8 = HP:TIMER2
// 003F8 @ hardware timer (38-3F), decremented 8192 times/s
// nothing - fall through to default
default:
Chipset.IORam[d]=c; // write data
// Pioneer annunciator area
bAnnunciator |= !Chipset.bSlave && d >= LA_ALL && d <= LA_RAD + 7;
if (d >= TIMER2) // timer2 update
{
Nunpack(Chipset.IORam+TIMER2, ReadT2(MASTER), 8);
memcpy(Chipset.IORam+d, a, s);
SetT2(MASTER,Npack(Chipset.IORam+TIMER2, 8));
goto finish;
}
}