-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathtrain.py
240 lines (206 loc) · 10.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
"""Description
"""
import argparse
import os
import sys
import math
import time
import tensorflow as tf
from feeder import Feeder
from model import SptAudioGen, SptAudioGenParams
import myutils
from collections import deque
from definitions import *
def parse_arguments():
parser = argparse.ArgumentParser(
description=__doc__,
formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument('db_dir', help='Directory containing db.')
parser.add_argument('model_dir', help='Directory to store model.')
parser.add_argument('--subset_fn', default='')
parser.add_argument('--encoders', nargs='*', type=str.lower, choices=ENCODERS, default=['audio', 'flow', 'video'], help="List of encoders.")
parser.add_argument('--separation', type=str.lower, default=FREQ_MASK, choices=SEPARATION, help="Separation net architecture.")
parser.add_argument('--ambi_order', type=int, default=1, help="Ambisonics order")
parser.add_argument('--audio_rate', type=int, default=48000, help="Audio frame rate")
parser.add_argument('--video_rate', type=int, default=10, help="Video frame rate")
parser.add_argument('--context', type=float, default=1.0, help="Context duration")
parser.add_argument('--sample_dur', type=float, default=0.1, help="Training sample duration")
parser.add_argument('--n_iters', type=int, default=1000000, help="Number of iterations")
parser.add_argument('--lr', type=float, default=1e-4, help="Base learning rate")
parser.add_argument('--lr_decay', type=float, default=0.5, help="Learning rate decay")
parser.add_argument('--lr_iters', type=int, default=250000, help="Iterations between decays.")
parser.add_argument('--batch_size', type=int, default=32, help="Batch size")
parser.add_argument('--resume', action='store_true', help="Restore and resume training.")
parser.add_argument('--num_sep_tracks', default=NUM_SEP_TRACKS_DEF, type=int,
help="Number of separataion tracks.")
parser.add_argument('--fft_window', default=SEP_FFT_WINDOW_DEF, type=float,
help="Window size for fft computation (secs).")
parser.add_argument('--context_units', default=CTX_FEATS_FCUNITS_DEF, nargs='+', type=int,
help="Number of fully connected units for context feature generation.")
parser.add_argument('--freq_mask_units', default=SEP_FREQ_MASK_FCUNITS_DEF, nargs='*', type=int,
help="Number of fully connected units for frequency mask generation.")
parser.add_argument('--loc_units', default=LOC_FCUNITS_DEF, nargs='+', type=int,
help="Number of fully connected units for localization weights generation.")
parser.add_argument('--gpu', type=int, default=0, help="GPU id")
args = parser.parse_args(sys.argv[1:])
if len(args.subset_fn) == 0:
args.subset_fn = None
if args.resume and not os.path.isfile(os.path.join(args.model_dir, 'train-params.txt')):
args.resume = False
return args
def main(args):
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu)
if not os.path.exists(args.model_dir):
os.makedirs(args.model_dir)
print('\n' + '='*30 + ' ARGUMENTS ' + '='*30)
sys.stdout.flush()
if args.resume:
params = myutils.load_params(args.model_dir)
args.encoders = params.encoders
args.separation = params.separation
args.ambi_order = params.ambi_order
args.audio_rate = params.audio_rate
args.video_rate = params.video_rate
args.context = params.context
args.sample_dur = params.sample_dur
else:
myutils.save_params(args)
myutils.print_params(args)
# Feeder
min_t = min([args.context, args.sample_dur, 1./args.video_rate])
args.video_rate = int(1. / min_t)
with tf.device('/cpu:0'), tf.variable_scope('feeder'):
feeder = Feeder(args.db_dir,
subset_fn=args.subset_fn,
ambi_order=args.ambi_order,
audio_rate=args.audio_rate,
video_rate=args.video_rate,
context=args.context,
duration=args.sample_dur,
return_video=VIDEO in args.encoders,
img_prep=myutils.img_prep_fcn(),
return_flow=FLOW in args.encoders,
frame_size=(224, 448),
queue_size=args.batch_size*5,
n_threads=4,
for_eval=False)
batches = feeder.dequeue(args.batch_size)
ambix_batch = batches['ambix']
video_batch = batches['video'] if 'video' in args.encoders else None
flow_batch = batches['flow'] if 'flow' in args.encoders else None
audio_mask_batch = batches['audio_mask']
t = int(args.audio_rate * args.sample_dur)
ss = int(args.audio_rate * args.context) / 2
n_chann_in = args.ambi_order**2
audio_input = ambix_batch[:, :, :n_chann_in]
audio_target = ambix_batch[:, ss:ss+t, n_chann_in:]
print('\n' + '=' * 20 + ' MODEL ' + '=' * 20)
sys.stdout.flush()
with tf.device('/gpu:0'):
# Model
num_sep = args.num_sep_tracks if args.separation != NO_SEPARATION else 1
params = SptAudioGenParams(sep_num_tracks=num_sep, ctx_feats_fc_units=args.context_units,
loc_fc_units=args.loc_units, sep_freq_mask_fc_units=args.freq_mask_units,
sep_fft_window=args.fft_window)
model = SptAudioGen(ambi_order=args.ambi_order,
audio_rate=args.audio_rate,
video_rate=args.video_rate,
context=args.context,
sample_duration=args.sample_dur,
encoders=args.encoders,
separation=args.separation,
params=params)
ambix_pred = model.inference_ops(audio=audio_input, video=video_batch, flow=flow_batch, is_training=True)
# Losses and evaluation metrics
print(audio_mask_batch)
with tf.variable_scope('metrics'):
metrics_t, _, _, _, _ = model.evaluation_ops(ambix_pred, audio_target, audio_input[:, ss:ss+t],
mask_channels=audio_mask_batch[:, args.ambi_order**2:])
step_t = tf.Variable(0, trainable=False, name='step')
with tf.variable_scope('loss'):
loss_t = model.loss_ops(metrics_t, step_t)
losses_t = {l: loss_t[l] for l in loss_t}
regularizers = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
if regularizers and 'regularization' in losses_t:
losses_t['regularization'] = tf.add_n(regularizers)
losses_t['total_loss'] = tf.add_n(losses_t.values())
# Optimizer
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.variable_scope('optimization') and tf.control_dependencies(update_ops):
train_op, lr_t = myutils.optimize(losses_t['total_loss'], step_t, args)
# Initialization
rest_ops = model.init_ops
init_op = [tf.global_variables_initializer(),
tf.local_variables_initializer()]
saver = tf.train.Saver(max_to_keep=1)
# Tensorboard
metrics_t['training_loss'] = losses_t['total_loss']
metrics_t['queue'] = feeder.queue_state
metrics_t['lr'] = lr_t
myutils.add_scalar_summaries(metrics_t.values(), metrics_t.keys())
summary_ops = tf.summary.merge(tf.get_collection(tf.GraphKeys.SUMMARIES))
summary_writer = tf.summary.FileWriter(args.model_dir, flush_secs=30)
#summary_writer.add_graph(tf.get_default_graph())
print('\n' + '='*30 + ' VARIABLES ' + '='*30)
model_vars = tf.global_variables()
import numpy as np
for v in model_vars:
if 'Adam' in v.op.name.split('/')[-1]:
continue
print(' * {:50s} | {:20s} | {:7s} | {:10s}'.format(v.op.name, str(v.get_shape()), str(np.prod(v.get_shape())), str(v.dtype)))
print('\n' + '='*30 + ' TRAINING ' + '='*30)
sys.stdout.flush()
config = tf.ConfigProto(
allow_soft_placement=True,
gpu_options=tf.GPUOptions(allow_growth=True)
)
with tf.Session(config=config) as sess:
print('Initializing network...')
sess.run(init_op)
if rest_ops:
sess.run(rest_ops)
print('Initializing data feeders...')
coord = tf.train.Coordinator()
tf.train.start_queue_runners(sess, coord)
feeder.start_threads(sess)
tf.get_default_graph().finalize()
# Restore model
init_step = 0
if args.resume:
print('Restoring previously saved model...')
ckpt = tf.train.latest_checkpoint(args.model_dir)
if ckpt:
saver.restore(sess, ckpt)
init_step = sess.run(step_t)
try:
print('Start training...')
duration = deque(maxlen=20)
for step in range(init_step, args.n_iters):
start_time = time.time()
if step % 20 != 0:
sess.run(train_op)
else:
outs = sess.run([train_op, summary_ops, losses_t['total_loss']] +
losses_t.values() + metrics_t.values())
if math.isnan(outs[2]):
raise ValueError('Training produced a NaN metric or loss.')
duration.append(time.time() - start_time)
if step % 20 == 0: # Print progress to terminal and tensorboard
myutils.print_stats(outs[3:], losses_t.keys() + metrics_t.keys(),
args.batch_size, duration, step, tag='TRAIN')
summary_writer.add_summary(outs[1], step)
sys.stdout.flush()
if step % 5000 == 0 and step != 0: # Save checkpoint
saver.save(sess, args.model_dir+'/model.ckpt', global_step=step_t)
print('='*60 + '\nCheckpoint saved\n' + '='*60)
except Exception, e:
print(str(e))
finally:
print('End of training.')
print('Saving model.')
myutils.save_params(args)
saver.save(sess, args.model_dir+'/model.ckpt')
coord.request_stop()
coord.join(stop_grace_period_secs=10)
if __name__ == '__main__':
main(parse_arguments())