-
Notifications
You must be signed in to change notification settings - Fork 97
/
Copy pathmodels.py
254 lines (195 loc) · 9.08 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import tensorflow as tf
from tensorflow.keras import Model
from tensorflow.keras.applications import MobileNetV2, ResNet50
from tensorflow.keras.layers import Input, Conv2D, ReLU, LeakyReLU
from modules.anchor import decode_tf, prior_box_tf
def _regularizer(weights_decay):
"""l2 regularizer"""
return tf.keras.regularizers.l2(weights_decay)
def _kernel_init(scale=1.0, seed=None):
"""He normal initializer"""
return tf.keras.initializers.he_normal()
class BatchNormalization(tf.keras.layers.BatchNormalization):
"""Make trainable=False freeze BN for real (the og version is sad).
ref: https://github.com/zzh8829/yolov3-tf2
"""
def __init__(self, axis=-1, momentum=0.9, epsilon=1e-5, center=True,
scale=True, name=None, **kwargs):
super(BatchNormalization, self).__init__(
axis=axis, momentum=momentum, epsilon=epsilon, center=center,
scale=scale, name=name, **kwargs)
def call(self, x, training=False):
if training is None:
training = tf.constant(False)
training = tf.logical_and(training, self.trainable)
return super().call(x, training)
def Backbone(backbone_type='ResNet50', use_pretrain=True):
"""Backbone Model"""
weights = None
if use_pretrain:
weights = 'imagenet'
def backbone(x):
if backbone_type == 'ResNet50':
extractor = ResNet50(
input_shape=x.shape[1:], include_top=False, weights=weights)
pick_layer1 = 80 # [80, 80, 512]
pick_layer2 = 142 # [40, 40, 1024]
pick_layer3 = 174 # [20, 20, 2048]
preprocess = tf.keras.applications.resnet.preprocess_input
elif backbone_type == 'MobileNetV2':
extractor = MobileNetV2(
input_shape=x.shape[1:], include_top=False, weights=weights)
pick_layer1 = 54 # [80, 80, 32]
pick_layer2 = 116 # [40, 40, 96]
pick_layer3 = 143 # [20, 20, 160]
preprocess = tf.keras.applications.mobilenet_v2.preprocess_input
else:
raise NotImplementedError(
'Backbone type {} is not recognized.'.format(backbone_type))
return Model(extractor.input,
(extractor.layers[pick_layer1].output,
extractor.layers[pick_layer2].output,
extractor.layers[pick_layer3].output),
name=backbone_type + '_extrator')(preprocess(x))
return backbone
class ConvUnit(tf.keras.layers.Layer):
"""Conv + BN + Act"""
def __init__(self, f, k, s, wd, act=None, name='ConvBN', **kwargs):
super(ConvUnit, self).__init__(name=name, **kwargs)
self.conv = Conv2D(filters=f, kernel_size=k, strides=s, padding='same',
kernel_initializer=_kernel_init(),
kernel_regularizer=_regularizer(wd),
use_bias=False, name='conv')
self.bn = BatchNormalization(name='bn')
if act is None:
self.act_fn = tf.identity
elif act == 'relu':
self.act_fn = ReLU()
elif act == 'lrelu':
self.act_fn = LeakyReLU(0.1)
else:
raise NotImplementedError(
'Activation function type {} is not recognized.'.format(act))
def call(self, x):
return self.act_fn(self.bn(self.conv(x)))
class FPN(tf.keras.layers.Layer):
"""Feature Pyramid Network"""
def __init__(self, out_ch, wd, name='FPN', **kwargs):
super(FPN, self).__init__(name=name, **kwargs)
act = 'relu'
if (out_ch <= 64):
act = 'lrelu'
self.output1 = ConvUnit(f=out_ch, k=1, s=1, wd=wd, act=act)
self.output2 = ConvUnit(f=out_ch, k=1, s=1, wd=wd, act=act)
self.output3 = ConvUnit(f=out_ch, k=1, s=1, wd=wd, act=act)
self.merge1 = ConvUnit(f=out_ch, k=3, s=1, wd=wd, act=act)
self.merge2 = ConvUnit(f=out_ch, k=3, s=1, wd=wd, act=act)
def call(self, x):
output1 = self.output1(x[0]) # [80, 80, out_ch]
output2 = self.output2(x[1]) # [40, 40, out_ch]
output3 = self.output3(x[2]) # [20, 20, out_ch]
up_h, up_w = tf.shape(output2)[1], tf.shape(output2)[2]
up3 = tf.image.resize(output3, [up_h, up_w], method='nearest')
output2 = output2 + up3
output2 = self.merge2(output2)
up_h, up_w = tf.shape(output1)[1], tf.shape(output1)[2]
up2 = tf.image.resize(output2, [up_h, up_w], method='nearest')
output1 = output1 + up2
output1 = self.merge1(output1)
return output1, output2, output3
class SSH(tf.keras.layers.Layer):
"""Single Stage Headless Layer"""
def __init__(self, out_ch, wd, name='SSH', **kwargs):
super(SSH, self).__init__(name=name, **kwargs)
assert out_ch % 4 == 0
act = 'relu'
if (out_ch <= 64):
act = 'lrelu'
self.conv_3x3 = ConvUnit(f=out_ch // 2, k=3, s=1, wd=wd, act=None)
self.conv_5x5_1 = ConvUnit(f=out_ch // 4, k=3, s=1, wd=wd, act=act)
self.conv_5x5_2 = ConvUnit(f=out_ch // 4, k=3, s=1, wd=wd, act=None)
self.conv_7x7_2 = ConvUnit(f=out_ch // 4, k=3, s=1, wd=wd, act=act)
self.conv_7x7_3 = ConvUnit(f=out_ch // 4, k=3, s=1, wd=wd, act=None)
self.relu = ReLU()
def call(self, x):
conv_3x3 = self.conv_3x3(x)
conv_5x5_1 = self.conv_5x5_1(x)
conv_5x5 = self.conv_5x5_2(conv_5x5_1)
conv_7x7_2 = self.conv_7x7_2(conv_5x5_1)
conv_7x7 = self.conv_7x7_3(conv_7x7_2)
output = tf.concat([conv_3x3, conv_5x5, conv_7x7], axis=3)
output = self.relu(output)
return output
class BboxHead(tf.keras.layers.Layer):
"""Bbox Head Layer"""
def __init__(self, num_anchor, wd, name='BboxHead', **kwargs):
super(BboxHead, self).__init__(name=name, **kwargs)
self.num_anchor = num_anchor
self.conv = Conv2D(filters=num_anchor * 4, kernel_size=1, strides=1)
def call(self, x):
h, w = tf.shape(x)[1], tf.shape(x)[2]
x = self.conv(x)
return tf.reshape(x, [-1, h * w * self.num_anchor, 4])
class LandmarkHead(tf.keras.layers.Layer):
"""Landmark Head Layer"""
def __init__(self, num_anchor, wd, name='LandmarkHead', **kwargs):
super(LandmarkHead, self).__init__(name=name, **kwargs)
self.num_anchor = num_anchor
self.conv = Conv2D(filters=num_anchor * 10, kernel_size=1, strides=1)
def call(self, x):
h, w = tf.shape(x)[1], tf.shape(x)[2]
x = self.conv(x)
return tf.reshape(x, [-1, h * w * self.num_anchor, 10])
class ClassHead(tf.keras.layers.Layer):
"""Class Head Layer"""
def __init__(self, num_anchor, wd, name='ClassHead', **kwargs):
super(ClassHead, self).__init__(name=name, **kwargs)
self.num_anchor = num_anchor
self.conv = Conv2D(filters=num_anchor * 2, kernel_size=1, strides=1)
def call(self, x):
h, w = tf.shape(x)[1], tf.shape(x)[2]
x = self.conv(x)
return tf.reshape(x, [-1, h * w * self.num_anchor, 2])
def RetinaFaceModel(cfg, training=False, iou_th=0.4, score_th=0.02,
name='RetinaFaceModel'):
"""Retina Face Model"""
input_size = cfg['input_size'] if training else None
wd = cfg['weights_decay']
out_ch = cfg['out_channel']
num_anchor = len(cfg['min_sizes'][0])
backbone_type = cfg['backbone_type']
# define model
x = inputs = Input([input_size, input_size, 3], name='input_image')
x = Backbone(backbone_type=backbone_type)(x)
fpn = FPN(out_ch=out_ch, wd=wd)(x)
features = [SSH(out_ch=out_ch, wd=wd, name=f'SSH_{i}')(f)
for i, f in enumerate(fpn)]
bbox_regressions = tf.concat(
[BboxHead(num_anchor, wd=wd, name=f'BboxHead_{i}')(f)
for i, f in enumerate(features)], axis=1)
landm_regressions = tf.concat(
[LandmarkHead(num_anchor, wd=wd, name=f'LandmarkHead_{i}')(f)
for i, f in enumerate(features)], axis=1)
classifications = tf.concat(
[ClassHead(num_anchor, wd=wd, name=f'ClassHead_{i}')(f)
for i, f in enumerate(features)], axis=1)
classifications = tf.keras.layers.Softmax(axis=-1)(classifications)
if training:
out = (bbox_regressions, landm_regressions, classifications)
else:
# only for batch size 1
preds = tf.concat( # [bboxes, landms, landms_valid, conf]
[bbox_regressions[0], landm_regressions[0],
tf.ones_like(classifications[0, :, 0][..., tf.newaxis]),
classifications[0, :, 1][..., tf.newaxis]], 1)
priors = prior_box_tf((tf.shape(inputs)[1], tf.shape(inputs)[2]),
cfg['min_sizes'], cfg['steps'], cfg['clip'])
decode_preds = decode_tf(preds, priors, cfg['variances'])
selected_indices = tf.image.non_max_suppression(
boxes=decode_preds[:, :4],
scores=decode_preds[:, -1],
max_output_size=tf.shape(decode_preds)[0],
iou_threshold=iou_th,
score_threshold=score_th)
out = tf.gather(decode_preds, selected_indices)
return Model(inputs, out, name=name)