-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapproximate_confluent_flow.py
441 lines (358 loc) · 15.8 KB
/
approximate_confluent_flow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
from math import inf
from gurobipy.gurobipy import GRB, Model, quicksum
from configure_gurobi import configure_gurobi
from fractional_integral_flow import SplittableFlow
from simulations import EPS, ConfluentMechanism
class OnePlusLogTwoApproximation(ConfluentMechanism):
PLOT_COLOR = "brown"
PLOT_ABBREVIATION = "A"
PLOT_LABEL = "($1 + \\log_2 |V|$)-approximation"
PLOT_PATTERN = "solid"
@staticmethod
def _contract(flow_graph, node, into_node, demands):
assert node != into_node
for succs in flow_graph:
for neighbor in succs:
if neighbor == node:
if into_node in succs:
succs[into_node] += succs[neighbor]
else:
succs[into_node] = succs[neighbor]
del succs[neighbor]
# TODO: Check that this is valid
flow_graph[node] = {}
demands[into_node] += demands[node]
demands[node] = 0
def _decrease_flow_or_inv_flow(self, flow_graph, f_min, node_from, node_to):
if self.graph.is_voter(node_from):
sign = -1
node_from, node_to = node_to, node_from
else:
sign = 1
assert not self.graph.is_voter(node_from)
assert node_to in flow_graph[node_from]
flow_graph[node_from][node_to] -= sign * f_min
assert flow_graph[node_from][node_to] >= -EPS
if flow_graph[node_from][node_to] <= EPS:
del flow_graph[node_from][node_to]
def _create_g_hat(self, flow_graph):
graph = [[] for _ in range(len(flow_graph))]
for i, succs in enumerate(flow_graph):
for neighbor in succs:
graph[i].append(neighbor)
if self.graph.is_voter(neighbor):
graph[neighbor].append(i)
return graph
@staticmethod
def detect_cycles_longer_than_two(graph):
"""
>>> OnePlusLogTwoApproximation.detect_cycles_longer_than_two([[1],[2],[0]])
[0, 1, 2, 0]
>>> OnePlusLogTwoApproximation.detect_cycles_longer_than_two([[1], [0], [0]])
>>> OnePlusLogTwoApproximation.detect_cycles_longer_than_two([[4], [2], [3], [1], [0]])
[1, 2, 3, 1]
>>> OnePlusLogTwoApproximation.detect_cycles_longer_than_two([[]])
>>> OnePlusLogTwoApproximation.detect_cycles_longer_than_two([[1], [2], [3], [2]])
>>> OnePlusLogTwoApproximation.detect_cycles_longer_than_two([[1], [2], [3], [4], [1]])
[1, 2, 3, 4, 1]
>>> OnePlusLogTwoApproximation.detect_cycles_longer_than_two([[], [0, 0, 2], [0, 3], [1, 0]])
[1, 2, 3, 1]
>>> OnePlusLogTwoApproximation.detect_cycles_longer_than_two([[], [2], [3], [0]])
Args:
graph (list of list of int): in adjacency list representation
Returns:
list of ints: node indices of a loop, first element is successor of the last.
"""
entered = set()
left = set()
def dfs(node, predecessor):
if node in entered:
return None
entered.add(node)
for neighbor in graph[node]:
assert neighbor != node
if neighbor == predecessor or neighbor in left:
continue
if neighbor in entered:
return [node, neighbor]
else:
result = dfs(neighbor, node)
if result is not None:
return [node] + result
left.add(node)
return None
for i in range(len(graph)):
result = dfs(i, None)
if result is not None:
assert len(result) > 3
assert result[0] == i
loop_point = result[-1]
assert result[-2] != loop_point # cycle of length 1
assert result[-3] != loop_point # cycle of length 2
assert result.count(loop_point) >= 2
for j in range(4, len(result) + 1):
if result[-j] == loop_point:
return result[-j:]
assert False
return None
def _node_aggregation(self, flow_graph, transitive_delegations, demands):
for i, succs in enumerate(flow_graph):
if len(succs) == 1:
delegate = list(succs.keys())[0]
if self.graph.is_voter(delegate):
transitive_delegations[i] = delegate
self._contract(flow_graph, i, delegate, demands)
return True
return False
def _breaking_sawtooth_cycles(self, flow_graph):
g_hat = self._create_g_hat(flow_graph)
cycle = self.detect_cycles_longer_than_two(g_hat)
assert cycle is None or len(cycle) >= 4 # minimal circle length 3 + repeated point 1
if cycle is not None:
f_min = inf
for i in range(len(cycle) - 1):
if cycle[i + 1] in flow_graph[cycle[i]]:
f_min = min(f_min, flow_graph[cycle[i]][cycle[i + 1]])
assert f_min < inf
for i in range(len(cycle) - 1):
self._decrease_flow_or_inv_flow(flow_graph, f_min, cycle[i], cycle[i + 1])
return True
return False
def _sink_deactivation(self, flow_graph, demands):
num_agents = len(flow_graph)
predecessors = [[] for _ in range(num_agents)]
inflow = [0. for _ in range(num_agents)]
number_of_sink_successors = [0 for _ in range(num_agents)]
for i, succs in enumerate(flow_graph):
for neighbor in succs:
assert succs[neighbor] >= EPS
predecessors[neighbor].append(i)
inflow[neighbor] += succs[neighbor]
if self.graph.is_voter(neighbor):
number_of_sink_successors[i] += 1
sj = None
for i in range(num_agents):
if (self.graph.is_voter(i) and len(predecessors[i]) == 1
and number_of_sink_successors[predecessors[i][0]] >= 2):
sj = i
break
assert sj is not None
v = predecessors[sj][0]
sl = None
for neighbor in flow_graph[v]:
if neighbor != sj and self.graph.is_voter(neighbor):
sl = neighbor
break
assert sl is not None
if demands[sj] + inflow[sj] + flow_graph[v][sl] < demands[sl] + inflow[sl] - flow_graph[v][sl]:
flow_graph[v][sj] += flow_graph[v][sl]
del flow_graph[v][sl]
else:
flow_graph[v][sl] += flow_graph[v][sj]
del flow_graph[v][sj]
def _transitive_delegations_to_delegations(self, transitive_delegations):
delegations_dict = {}
num_agents = len(transitive_delegations)
predecessors = [[] for _ in range(num_agents)]
for i in range(num_agents):
if self.graph.is_voter(i):
delegations_dict[i] = None
else:
for neighbor in self.graph.potential_delegations[i]:
predecessors[neighbor].append(i)
def dfs(node):
assert node in delegations_dict
for pred in predecessors[node]:
if pred in delegations_dict:
continue
if transitive_delegations[pred] != transitive_delegations[node]:
continue
delegations_dict[pred] = node
dfs(pred)
for i in range(num_agents):
if self.graph.is_voter(i):
dfs(i)
assert len(delegations_dict) == num_agents
return [delegations_dict[i] for i in range(num_agents)]
def get_delegations(self, time_out=None):
num_agents = self.graph.number_of_nodes()
transitive_delegations = [i for i in range(num_agents)]
demands = [1 for _ in range(num_agents)]
flow_graph = SplittableFlow.solve_flow(self.graph.potential_delegations)[0]
assert len(flow_graph) == num_agents
for i, succs in enumerate(flow_graph):
if succs is None:
assert self.graph.is_voter(i)
else:
assert len(succs) > 0
assert all(succs[neighbor] >= EPS for neighbor in succs)
assert all(neighbor != i for neighbor in succs)
new_flow = []
for succs in flow_graph:
if succs is None:
new_flow.append({})
else:
new_flow.append(succs)
while any(len(succs) > 0 for succs in new_flow):
if self._node_aggregation(new_flow, transitive_delegations, demands):
continue
if self._breaking_sawtooth_cycles(new_flow):
continue
self._sink_deactivation(new_flow, demands)
delegations = self._transitive_delegations_to_delegations(transitive_delegations)
return delegations
class OnePlusLnApproximation(OnePlusLogTwoApproximation):
PLOT_COLOR = "#4CAF50"
PLOT_ABBREVIATION = "a"
PLOT_LABEL = "($1 + \\log |V|$)-approximation"
PLOT_PATTERN = "solid"
@staticmethod
def sink_strongly_connected_component(graph):
"""Compute a strongly connected component (SCC) that is a sink in the DAG of SCCs.
Isolated sinks are not reported. The function assumes that all sinks are isolated.
>>> OnePlusLnApproximation.sink_strongly_connected_component([[1], [2], [0]])
[0, 1, 2]
>>> OnePlusLnApproximation.sink_strongly_connected_component([[1], [2], [1]])
[1, 2]
>>> OnePlusLnApproximation.sink_strongly_connected_component([[], [2], [1]])
[1, 2]
Args:
graph (list of list of int): graph in adjacency list representation
Returns:
list of int:
list of all nodes in the
"""
num_nodes = len(graph)
dfs_num = [None for _ in range(num_nodes)] # Iteration counter when visited for the first time
dfs_low = [0 for _ in range(num_nodes)] # Lowest dfs_num reachable from DFS spanning subtree of node
visited = [False for _ in range(num_nodes)]
dfs_number_counter = 0
stack = []
def tarjan_scc(u):
nonlocal dfs_number_counter, dfs_num, dfs_low, visited, stack
assert not visited[u]
dfs_low[u] = dfs_number_counter
dfs_num[u] = dfs_number_counter
dfs_number_counter += 1
stack.append(u)
visited[u] = True
for neighbor in graph[u]:
if dfs_num[neighbor] is None:
inner = tarjan_scc(neighbor)
if inner is not None:
return inner
assert visited[neighbor]
if visited[neighbor]:
dfs_low[u] = min(dfs_low[u], dfs_low[neighbor])
if dfs_low[u] == dfs_num[u]:
index = stack.index(u)
assert index == dfs_num[u]
return stack[index:]
return None
for i in range(num_nodes):
if len(graph[i]) > 0 and dfs_num[i] is None:
inner = tarjan_scc(i)
if inner is not None:
return inner
assert False
def _balancing(self, flow_graph, sinks, frontier, demands):
configure_gurobi()
model = Model()
xij = {i: {} for i in frontier}
for node in frontier:
congestion = sum(flow_graph[node][neighbor] for neighbor in flow_graph[node])
for neighbor in flow_graph[node]:
assert neighbor in sinks
xij[node][neighbor] = model.addVar(vtype=GRB.CONTINUOUS, name=f"x_{node}_{neighbor}")
model.addConstr(xij[node][neighbor] >= 0)
model.addConstr(quicksum(xij[node][neighbor] for neighbor in flow_graph[node]) == congestion)
sink_predecessors = {i: [] for i in sinks}
for node in frontier:
for neighbor in flow_graph[node]:
sink_predecessors[neighbor].append(node)
bj = {}
for node in sinks:
bj[node] = model.addVar(vtype=GRB.CONTINUOUS, name=f"b_{node}")
model.addConstr(bj[node] == quicksum(xij[pred][node] for pred in sink_predecessors[node]) + demands[node])
model.setObjective(quicksum(bj[node] * bj[node] for node in sinks), GRB.MINIMIZE)
model.optimize()
any_edge_deleted = False
for node in frontier:
to_delete = []
for neighbor in flow_graph[node]:
flow = xij[node][neighbor].X
if flow < EPS:
to_delete.append(neighbor)
any_edge_deleted = True
else:
flow_graph[node][neighbor] = flow
for neighbor in to_delete:
del flow_graph[node][neighbor]
return any_edge_deleted
def _improved_sink_deactivation(self, flow_graph, demands):
g_hat = self._create_g_hat(flow_graph)
scc = self.sink_strongly_connected_component(g_hat)
assert len(scc) >= 3
sinks = []
frontier = []
for node in scc:
if self.graph.is_voter(node):
sinks.append(node)
else:
frontier.append(node)
assert len(sinks) > 0
if self._balancing(flow_graph, sinks, frontier, demands):
return
sinks_predecessors = {i: [] for i in sinks}
sinks_inflow = {i: 0. for i in sinks}
for node in frontier:
for neighbor in flow_graph[node]:
sinks_predecessors[neighbor].append(node)
sinks_inflow[neighbor] += flow_graph[node][neighbor]
min_inflow_sink = sinks[0]
for node in sinks[1:]:
if sinks_inflow[node] < sinks_inflow[min_inflow_sink]:
min_inflow_sink = node
for pred in sinks_predecessors[min_inflow_sink]:
assert len(flow_graph[pred]) >= 2
neighbors = list(flow_graph[pred].keys())
if min_inflow_sink == neighbors[0]:
alternative_sink = neighbors[1]
assert alternative_sink != min_inflow_sink
else:
alternative_sink = neighbors[0]
flow_graph[pred][alternative_sink] += flow_graph[pred][min_inflow_sink]
del flow_graph[pred][min_inflow_sink]
sinks.remove(min_inflow_sink)
self._balancing(flow_graph, sinks, frontier, demands)
def get_delegations(self, time_out=None):
num_agents = self.graph.number_of_nodes()
transitive_delegations = [i for i in range(num_agents)]
demands = [1 for _ in range(num_agents)]
# list of (dict of int → float): for each node, dictionary mapping successors to positive flow
flow_graph = SplittableFlow.solve_flow(self.graph.potential_delegations)[0]
assert len(flow_graph) == num_agents
for i, succs in enumerate(flow_graph):
if succs is None:
assert self.graph.is_voter(i)
else:
assert len(succs) > 0
assert all(succs[neighbor] >= EPS for neighbor in succs)
assert all(neighbor != i for neighbor in succs)
new_flow = []
for succs in flow_graph:
if succs is None:
new_flow.append({})
else:
new_flow.append(succs)
while any(len(succs) > 0 for succs in new_flow):
if self._node_aggregation(new_flow, transitive_delegations, demands):
continue
if self._breaking_sawtooth_cycles(new_flow):
continue
self._improved_sink_deactivation(new_flow, demands)
delegations = self._transitive_delegations_to_delegations(transitive_delegations)
return delegations
if __name__ == "__main__":
from doctest import testmod
testmod()