forked from fabioserpa/CNPJ-full
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcfwf.py
107 lines (88 loc) · 4.58 KB
/
cfwf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import pandas as pd
def read_cfwf(filepath_or_buffer, type_width, colspecs, names=None,
dtype=None, chunksize=None, nrows=None, compression='infer',
encoding=None):
'''Read complex fixed-width formatted lines, which are fixed-width formatted
files with different line types, each one possibly having different
colspecs, names and dtypes. Returns a dict of line type -> pandas.DataFrame.
Also supports optionally breaking of the file into chunks.
Arguments:
filepath_or_buffer -- str, pathlib.Path, py._path.local.LocalPath or any
object with a read() method (such as a file handle or StringIO).
type_width -- int
Number of characters indicating the line type in the beginning of each
line.
colspecs -- dict of line type -> list of pairs (int, int).
A dict of list of pairs (tuples) giving the extents of the fixed-width
fields of each line as half-open intervals (i.e., [from, to[ ), for each
line type. The line types included in the colspecs indicates which line
types are supposed to be read. Lines with other types will be ignored.
names -- dict of line type -> list, default None
dict of list of column names to use, one list for each line type.
dtype -- dict of line type -> dict of column -> type, default None
Data type for columns, for each line type. If not specified for a
specific column, data will be kept as str.
chuncksize -- int, default None
If specified, break the file into chunks and returns a generator.
nrows -- int, default None
Limit the number of lines to be read.
'''
# Calculate line width as the maximum
# position number from the colspecs.
line_width = max([max(colspec)[1] for colspec in colspecs.values()])
# Read raw file as a two column dataframe, one column for the line type
# and the other column for the line content (to be split later).
raw_data = pd.read_fwf(filepath_or_buffer,
colspecs=[(0,type_width),(type_width,line_width)],
names=['line_type','_content'],
dtype=str,
header=None,
delimiter='\t', # To avoid autostrip content
chunksize=chunksize,
nrows=nrows,
compression=compression,
encoding=encoding)
if chunksize is None:
return _cfwf_chunck(raw_data,
type_width,
colspecs,
names,
dtype)
else:
return _cfwf_chunck_reader(raw_data,
type_width,
colspecs,
names,
dtype)
def _cfwf_chunck(df, type_width, colspecs, names=None, dtype=None):
df.set_index('line_type', inplace=True)
data_dict = {}
# For each line type specified in colspecs.
for ltype, specs in colspecs.items():
try:
# Get all rows corresponding to the line type.
data = df.loc[[ltype],:].copy()
# Create columns spliting content according to colspecs.
for i, column in enumerate(specs):
data[i] = (data['_content']
.str.slice(column[0]-type_width,
column[1]-type_width)
.str.strip())
# Original content column not necessary anymore.
data_dict[ltype] = data.drop('_content', axis=1)
# Change column names according to parameter "names".
if names is not None:
data_dict[ltype].columns = names[ltype]
# If dtypes specified and only if specified
# for this specific line type.
if (dtype is not None) & (ltype in dtype):
# Change column dtypes according to parameter "dtype"
for col_name, col_type in dtype[ltype].items():
data_dict[ltype][col_name] = (data_dict[ltype][col_name]
.astype(col_type))
except KeyError:
pass
return data_dict
def _cfwf_chunck_reader(reader, type_width, colspecs, names=None, dtype=None):
for chunk in reader:
yield _cfwf_chunck(chunk, type_width, colspecs, names, dtype)