forked from EduardHeijkoop/Utilities
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGet_OSM_Water.py
212 lines (188 loc) · 7.93 KB
/
Get_OSM_Water.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import overpy
import numpy as np
import pandas as pd
import geopandas as gpd
import shapely
import argparse
import sys
def flatten_list(nested_list):
flat_list = []
for item in nested_list:
if isinstance(item, list):
flat_list.extend(flatten_list(item))
else:
flat_list.append(item)
return flat_list
def get_osm_water(lon_min,lon_max,lat_min,lat_max):
'''
Given a lon/lat extent (order for OSM is lat/lon),
downloads all buildings in that region
Returns result, which is an overpy structure
'''
api = overpy.Overpass()
bbox = str(lat_min)+','+str(lon_min)+','+str(lat_max)+','+str(lon_max)
result = api.query("""
[out:json][timeout:2000][maxsize:1073741824];
(
way["natural"="water"]("""+bbox+""");
relation["natural"="water"]("""+bbox+""");
);
out body;
>;
out skel qt;
""")
return result
def relation_to_geometry(relation):
shell = []
holes = []
for m in relation.members:
w = m.resolve()
lon = np.asarray([float(n.lon) for n in w.nodes])
lat = np.asarray([float(n.lat) for n in w.nodes])
if m.role == 'inner':
holes.append(shapely.geometry.LineString(np.stack((lon,lat),axis=-1)))
elif m.role == 'outer':
shell.append(shapely.geometry.LineString(np.stack((lon,lat),axis=-1)))
if len(shell) > 1:
shell_merged = shapely.ops.linemerge(shell)
elif len(shell) == 1:
shell_merged = shell[0]
else:
return None
if len(holes) > 1:
holes_merged = shapely.ops.linemerge(holes)
if holes_merged.geom_type == 'MultiLineString':
holes_merged = [g for g in holes_merged.geoms]
else:
holes_merged = [holes_merged]
elif len(holes) == 1:
holes_merged = holes
else:
holes_merged = None
if shell_merged.geom_type == 'MultiLineString':
geom = []
for g in shell_merged.geoms:
shell_holes = []
if holes_merged is None:
geom.append(shapely.geometry.Polygon(shell=np.asarray(g.xy).T,holes=[]))
else:
for h in holes_merged:
if g.contains(h):
shell_holes.append(h)
geom.append(shapely.geometry.Polygon(shell=np.asarray(g.xy).T,holes=shell_holes))
elif shell_merged.geom_type == 'LineString':
geom = shapely.geometry.Polygon(shell=np.asarray(shell_merged.xy).T,holes=holes_merged)
else:
geom = None
return geom
def osm_ways_to_poly(osm_result,relation_way_ids):
'''
'''
lss = [] #convert ways to linstrings
for ii_w,way in enumerate(osm_result.ways):
if way in relation_way_ids:
continue
ls_coords = []
for node in way.nodes:
ls_coords.append((node.lon,node.lat)) # create a list of node coordinates
lss.append(shapely.geometry.LineString(ls_coords)) # create a LineString from coords
merged = shapely.ops.linemerge([*lss]) # merge LineStrings
borders = shapely.ops.unary_union(merged) # linestrings to a MultiLineString
polygons = list(shapely.ops.polygonize(borders))
return polygons
# def ways_to_geom(way,relation_way_ids):
# '''
# '''
# if way.id not in relation_way_ids:
# return None
# lon = np.asarray([float(n.lon) for n in way.nodes])
# lat = np.asarray([float(n.lat) for n in way.nodes])
# if len(lon) < 4 or len(lat) < 4:
# return None
# geom = shapely.geometry.Polygon(np.stack((lon,lat),axis=-1))
# return geom
def main():
parser = argparse.ArgumentParser(description='Download OSM water polygons')
parser.add_argument('--extents',type=float,nargs=4,help='lon_min lon_max lat_min lat_max')
parser.add_argument('--out_file',type=str,help='Output file name')
# parser.add_argument('--min_size',type=float,default=10000.0,help='Minimum polygon size (m^2)')
# parser.add_argument('--unary_union',action='store_true',help='Perform unary union',default=False)
parser.add_argument('--inverse',action='store_true',help='Inverse selection',default=False)
# parser.add_argument('--clip',action='store_true',help='Clip to OSM coastline?',default=False)
args = parser.parse_args()
lon_min,lon_max,lat_min,lat_max = args.extents
output_file = args.out_file
# unary_flag = args.unary_union
# min_size = args.min_size
inverse_flag = args.inverse
# clip_flag = args.clip
water_result = get_osm_water(lon_min,lon_max,lat_min,lat_max)
relation_way_ids = []
relation_ways_outer = []
relation_ways_inner = []
for r in water_result.relations:
for m in r.members:
relation_way_ids.append(m.ref)
if m.role == 'inner':
relation_ways_inner.append(m.ref)
elif m.role == 'outer':
relation_ways_outer.append(m.ref)
way_ids = water_result.way_ids
poly_list = [relation_to_geometry(r) for r in water_result.relations]
poly_list = flatten_list(poly_list)
poly_list = [p for p in poly_list if p is not None]
poly_list_ways = osm_ways_to_poly(water_result,relation_way_ids)
gdf_relations = gpd.GeoDataFrame(geometry=poly_list,crs='EPSG:4326')
gdf_ways = gpd.GeoDataFrame(geometry=poly_list_ways,crs='EPSG:4326')
idx_valid_relations = np.asarray([g.is_valid for g in gdf_relations.geometry])
idx_valid_ways = np.asarray([g.is_valid for g in gdf_ways.geometry])
gdf_relations = gdf_relations[idx_valid_relations].reset_index(drop=True)
gdf_ways = gdf_ways[idx_valid_ways].reset_index(drop=True)
#Need to find a way to isolate incorrect ways
idx_contains = np.zeros(len(gdf_ways),dtype=bool)
for i in range(len(gdf_ways)):
for j in range(len(gdf_relations)):
if gdf_relations.geometry[j].intersection(gdf_ways.geometry[i]).area/gdf_ways.geometry[i].area > 0.8:
idx_contains[i] = True
break
if gdf_relations.geometry[j].contains(gdf_ways.geometry[i]):
idx_contains[i] = True
break
gdf_ways = gdf_ways[~idx_contains].reset_index(drop=True)
gdf_total = pd.concat([gdf_relations,gdf_ways],ignore_index=True)
mp = shapely.ops.unary_union(gdf_total.geometry)
if mp.geom_type == 'MultiPolygon':
poly_list_full = [p for p in mp.geoms]
elif mp.geom_type == 'Polygon':
poly_list_full = [mp]
else:
poly_list_full = []
gdf = gpd.GeoDataFrame(geometry=poly_list_full,crs='EPSG:4326')
# poly_list.extend(poly_list_ways)
# gdf = gpd.GeoDataFrame(geometry=poly_list,crs='EPSG:4326')
# if min_size > 0:
# #requires DEM package for deg2tum and utm2epsg
# #need to convert to a non-degree projection to properly compute area
# sys.path.insert(0,'../DEM')
# from dem_utils import deg2utm,utm2epsg
# lon_mean = (gdf.bounds.minx.min() + gdf.bounds.maxx.max())*0.5
# lat_mean = (gdf.bounds.miny.min() + gdf.bounds.maxy.max())*0.5
# x,y,zone = deg2utm(lon_mean,lat_mean)
# epsg_code = utm2epsg(zone)
# gdf = gdf[gdf.to_crs(f'EPSG:{epsg_code}').area > min_size].reset_index(drop=True)
if inverse_flag == True:
buffer_val = 0.1
bbox = shapely.geometry.box(lon_min-buffer_val,lat_min-buffer_val,lon_max+buffer_val,lat_max+buffer_val)
inverse_geom = bbox
for i in range(len(gdf)):
inverse_geom = inverse_geom.symmetric_difference(gdf.geometry[i])
if inverse_geom.geom_type == 'Polygon':
gdf = gpd.GeoDataFrame(geometry=[inverse_geom],crs='EPSG:4326')
else:
gdf = gpd.GeoDataFrame(geometry=[g for g in inverse_geom.geoms],crs='EPSG:4326')
gdf = gdf.clip(bbox).reset_index(drop=True)
gdf = gdf[gdf.geom_type != 'LineString'].reset_index(drop=True)
gdf = gdf[gdf.geom_type != 'MultiLineString'].reset_index(drop=True)
gdf.to_file(output_file)
if __name__ == '__main__':
main()