forked from rosinality/stylegan2-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalc_inception.py
executable file
·165 lines (132 loc) · 5.64 KB
/
calc_inception.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import argparse
import pickle
import os
import torch
from torch import nn
from torch.nn import functional as F
from torch.utils.data import DataLoader, Subset
from torchvision import transforms, datasets
from torchvision.models import inception_v3, Inception3
import numpy as np
from tqdm import tqdm
from PIL import Image
from inception import InceptionV3
from dataset import MultiResolutionDataset, VideoFolderDataset, get_image_dataset
class Inception3Feature(Inception3):
def forward(self, x):
if x.shape[2] != 299 or x.shape[3] != 299:
x = F.interpolate(x, size=(299, 299), mode="bilinear", align_corners=True)
x = self.Conv2d_1a_3x3(x) # 299 x 299 x 3
x = self.Conv2d_2a_3x3(x) # 149 x 149 x 32
x = self.Conv2d_2b_3x3(x) # 147 x 147 x 32
x = F.max_pool2d(x, kernel_size=3, stride=2) # 147 x 147 x 64
x = self.Conv2d_3b_1x1(x) # 73 x 73 x 64
x = self.Conv2d_4a_3x3(x) # 73 x 73 x 80
x = F.max_pool2d(x, kernel_size=3, stride=2) # 71 x 71 x 192
x = self.Mixed_5b(x) # 35 x 35 x 192
x = self.Mixed_5c(x) # 35 x 35 x 256
x = self.Mixed_5d(x) # 35 x 35 x 288
x = self.Mixed_6a(x) # 35 x 35 x 288
x = self.Mixed_6b(x) # 17 x 17 x 768
x = self.Mixed_6c(x) # 17 x 17 x 768
x = self.Mixed_6d(x) # 17 x 17 x 768
x = self.Mixed_6e(x) # 17 x 17 x 768
x = self.Mixed_7a(x) # 17 x 17 x 768
x = self.Mixed_7b(x) # 8 x 8 x 1280
x = self.Mixed_7c(x) # 8 x 8 x 2048
x = F.avg_pool2d(x, kernel_size=8) # 8 x 8 x 2048
return x.view(x.shape[0], x.shape[1]) # 1 x 1 x 2048
def load_patched_inception_v3():
# inception = inception_v3(pretrained=True)
# inception_feat = Inception3Feature()
# inception_feat.load_state_dict(inception.state_dict())
inception_feat = InceptionV3([3], normalize_input=False)
return inception_feat
@torch.no_grad()
def extract_features(loader, inception, device):
pbar = tqdm(loader)
feature_list = []
for img in pbar:
if isinstance(img, (list, tuple)): # (image, label) pair
img = img[0]
img = img.to(device)
feature = inception(img)[0].view(img.shape[0], -1)
feature_list.append(feature.to("cpu"))
features = torch.cat(feature_list, 0)
return features
if __name__ == "__main__":
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
parser = argparse.ArgumentParser(
description="Calculate Inception v3 features for datasets"
)
parser.add_argument(
"--size",
type=int,
default=256,
help="image sizes used for embedding calculation",
)
parser.add_argument(
"--batch", default=64, type=int, help="batch size for inception networks"
)
parser.add_argument(
"--n_sample",
type=int,
default=50000,
help="number of samples used for embedding calculation",
)
parser.add_argument(
"--flip", action="store_true", help="apply random flipping to real images"
)
parser.add_argument("--eval_type", type=str, default='train')
parser.add_argument("--name", type=str, default=None, help="name of inception embedding file")
parser.add_argument("--dataset", type=str, default='multires')
parser.add_argument("--cache", type=str, default=None)
parser.add_argument("path", metavar="PATH", help="path to datset lmdb file")
args = parser.parse_args()
inception = load_patched_inception_v3()
inception = nn.DataParallel(inception).eval().to(device)
dset = None
if args.dataset == 'multires':
transform = transforms.Compose(
[
transforms.RandomHorizontalFlip(p=0.5 if args.flip else 0),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
]
)
dset = MultiResolutionDataset(args.path, transform=transform, resolution=args.size)
elif args.dataset == 'videofolder':
transform = transforms.Compose(
[
transforms.RandomHorizontalFlip(p=0.5 if args.flip else 0),
transforms.Resize(args.size), # Image.LANCZOS
transforms.CenterCrop(args.size),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
)
dset = VideoFolderDataset(args.path, transform, mode='image', cache=args.cache)
elif args.dataset == 'imagefolder':
transform = transforms.Compose(
[
transforms.RandomHorizontalFlip(p=0.5 if args.flip else 0),
transforms.Resize(args.size, Image.LANCZOS),
transforms.CenterCrop(args.size),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
)
dset = datasets.ImageFolder(args.path, transform=transform)
else:
dset = get_image_dataset(args, args.dataset, args.path, train=args.eval_type=='train')
# args.n_sample = min(args.n_sample, len(dset))
indices = torch.randperm(len(dset))[:args.n_sample]
dset = Subset(dset, indices)
loader = DataLoader(dset, batch_size=args.batch, num_workers=4, shuffle=True)
features = extract_features(loader, inception, device).numpy()
# features = features[: args.n_sample]
print(f"extracted {features.shape[0]} features")
mean = np.mean(features, 0)
cov = np.cov(features, rowvar=False)
name = args.name or os.path.splitext(os.path.basename(args.path))[0]
with open(f"inception_{name}.pkl", "wb") as f:
pickle.dump({"mean": mean, "cov": cov, "size": args.size, "path": args.path}, f)