You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
hello. I am a developer who is just starting to use darknet. I created an environment for learning the model and am now trying to learn it, but an error occurred during the learning process, so I am asking this question.
It may be a bit inconvenient because the translation is being done using a translator.
The code I am showing from now on is yolov4-p6.cfg.
`[net]
============ End of Head ============ #`
Error: l.outputs == params.inputs, filters= in the [convolutional]-layer doesn't correspond to classes= or mask= in [yolo]-layer: No error
This is the exact error, but I'm not sure why it appears.
please help me.
If you have any questions, please ask and I will answer.
thx
The text was updated successfully, but these errors were encountered:
hello. I am a developer who is just starting to use darknet. I created an environment for learning the model and am now trying to learn it, but an error occurred during the learning process, so I am asking this question.
It may be a bit inconvenient because the translation is being done using a translator.
The code I am showing from now on is yolov4-p6.cfg.
`[net]
Testing
#batch=1
#subdivisions=1
Training
batch=64
subdivisions=16
width=64
height=64
channels=3
momentum=0.949
decay=0.0005
angle=0
saturation = 1.5
exposure = 1.5
hue=.1
learning_rate=0.001
burn_in=1000
max_batches = 700
policy=steps
steps=400,450
scales=.1,.1
mosaic=1
letter_box=1
ema_alpha=0.9998
#use_cuda_graph = 1
============ Backbone ============
Stem
0
[convolutional]
batch_normalize=1
filters=32
size=3
stride=1
pad=1
activation=mish
P1
Downsample
[convolutional]
batch_normalize=1
filters=64
size=3
stride=2
pad=1
activation=mish
Split
[convolutional]
batch_normalize=1
filters=32
size=1
stride=1
pad=1
activation=mish
[route]
layers = -2
[convolutional]
batch_normalize=1
filters=32
size=1
stride=1
pad=1
activation=mish
Residual Block
[convolutional]
batch_normalize=1
filters=32
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
filters=32
size=3
stride=1
pad=1
activation=mish
[shortcut]
from=-3
activation=linear
Transition first
[convolutional]
batch_normalize=1
filters=32
size=1
stride=1
pad=1
activation=mish
Merge [-1, -(3k+4)]
[route]
layers = -1,-7
Transition last
10 (previous+7+3k)
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=mish
P2
Downsample
[convolutional]
batch_normalize=1
filters=128
size=3
stride=2
pad=1
activation=mish
Split
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=mish
[route]
layers = -2
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=mish
Residual Block
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=mish
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=mish
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=mish
[shortcut]
from=-3
activation=linear
Transition first
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=mish
Merge [-1, -(3k+4)]
[route]
layers = -1,-13
Transition last
26 (previous+7+3k)
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish
P3
Downsample
[convolutional]
batch_normalize=1
filters=256
size=3
stride=2
pad=1
activation=mish
Split
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish
[route]
layers = -2
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish
Residual Block
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=mish
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=mish
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=mish
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=mish
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=mish
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=mish
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=mish
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=mish
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=mish
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=mish
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=mish
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=mish
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=mish
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=mish
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=mish
[shortcut]
from=-3
activation=linear
Transition first
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish
Merge [-1, -(3k+4)]
[route]
layers = -1,-49
Transition last
78 (previous+7+3k)
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish
P4
Downsample
[convolutional]
batch_normalize=1
filters=512
size=3
stride=2
pad=1
activation=mish
Split
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish
[route]
layers = -2
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish
Residual Block
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=mish
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=mish
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=mish
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=mish
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=mish
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=mish
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=mish
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=mish
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=mish
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=mish
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=mish
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=mish
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=mish
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=mish
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=mish
[shortcut]
from=-3
activation=linear
Transition first
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish
Merge [-1, -(3k+4)]
[route]
layers = -1,-49
Transition last
130 (previous+7+3k)
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish
P5
Downsample
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=2
pad=1
activation=mish
Split
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish
[route]
layers = -2
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish
Residual Block
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=mish
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=mish
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=mish
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=mish
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=mish
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=mish
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=mish
[shortcut]
from=-3
activation=linear
Transition first
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish
Merge [-1, -(3k+4)]
[route]
layers = -1,-25
Transition last
158 (previous+7+3k)
[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=1
activation=mish
P6
Downsample
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=2
pad=1
activation=mish
Split
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish
[route]
layers = -2
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish
Residual Block
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=mish
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=mish
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=mish
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=mish
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=mish
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=mish
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=mish
[shortcut]
from=-3
activation=linear
Transition first
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish
Merge [-1, -(3k+4)]
[route]
layers = -1,-25
Transition last
186 (previous+7+3k)
[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=1
activation=mish
============ End of Backbone ============
============ Neck ============
CSPSPP
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish
[route]
layers = -2
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=mish
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish
SPP
[maxpool]
stride=1
size=5
[route]
layers=-2
[maxpool]
stride=1
size=9
[route]
layers=-4
[maxpool]
stride=1
size=13
[route]
layers=-1,-3,-5,-6
End SPP
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=mish
[route]
layers = -1, -13
201 (previous+6+5+2k)
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish
End of CSPSPP
FPN-5
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish
[upsample]
stride=2
[route]
layers = 158
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish
[route]
layers = -1, -3
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish
Split
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish
[route]
layers = -2
Plain Block
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=mish
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=mish
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=mish
Merge [-1, -(2k+2)]
[route]
layers = -1, -8
Transition last
217 (previous+6+4+2k)
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish
FPN-4
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish
[upsample]
stride=2
[route]
layers = 130
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish
[route]
layers = -1, -3
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish
Split
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish
[route]
layers = -2
Plain Block
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=mish
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=mish
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=mish
Merge [-1, -(2k+2)]
[route]
layers = -1, -8
Transition last
233 (previous+6+4+2k)
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish
FPN-3
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish
[upsample]
stride=2
[route]
layers = 78
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish
[route]
layers = -1, -3
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish
Split
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish
[route]
layers = -2
Plain Block
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=128
activation=mish
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=128
activation=mish
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=128
activation=mish
Merge [-1, -(2k+2)]
[route]
layers = -1, -8
Transition last
249 (previous+6+4+2k)
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish
PAN-4
[convolutional]
batch_normalize=1
size=3
stride=2
pad=1
filters=256
activation=mish
[route]
layers = -1, 233
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish
Split
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish
[route]
layers = -2
Plain Block
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=mish
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=mish
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=mish
[route]
layers = -1,-8
Transition last
262 (previous+3+4+2k)
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish
PAN-5
[convolutional]
batch_normalize=1
size=3
stride=2
pad=1
filters=512
activation=mish
[route]
layers = -1, 217
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish
Split
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish
[route]
layers = -2
Plain Block
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=mish
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=mish
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=mish
[route]
layers = -1,-8
Transition last
275 (previous+3+4+2k)
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish
PAN-6
[convolutional]
batch_normalize=1
size=3
stride=2
pad=1
filters=512
activation=mish
[route]
layers = -1, 201
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish
Split
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish
[route]
layers = -2
Plain Block
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=mish
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=mish
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=mish
[route]
layers = -1,-8
Transition last
288 (previous+3+4+2k)
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish
============ End of Neck ============
============ Head ============
YOLO-3
[route]
layers = 249
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=21
activation=mish
[convolutional]
size=1
stride=1
pad=1
filters=21
activation=logistic
#activation=linear
use linear for Pytorch-Scaled-YOLOv4, and logistic for Darknet
[yolo]
mask = 0,1,2,3
anchors = 13,17, 31,25, 24,51, 61,45, 61,45, 48,102, 119,96, 97,189, 97,189, 217,184, 171,384, 324,451, 324,451, 545,357, 616,618, 1024,1024
classes=2
num=16
jitter=.1
scale_x_y = 2.0
objectness_smooth=1
ignore_thresh = .7
truth_thresh = 1
#random=1
resize=1.5
iou_thresh=0.2
iou_normalizer=0.05
cls_normalizer=0.5
obj_normalizer=1.0
iou_loss=ciou
nms_kind=diounms
beta_nms=0.6
new_coords=1
max_delta=2
YOLO-4
[route]
layers = 262
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=21
activation=mish
[convolutional]
size=1
stride=1
pad=1
filters=21
activation=logistic
#activation=linear
use linear for Pytorch-Scaled-YOLOv4, and logistic for Darknet
[yolo]
mask = 4,5,6,7
anchors = 13,17, 31,25, 24,51, 61,45, 61,45, 48,102, 119,96, 97,189, 97,189, 217,184, 171,384, 324,451, 324,451, 545,357, 616,618, 1024,1024
classes=2
num=16
jitter=.1
scale_x_y = 2.0
objectness_smooth=1
ignore_thresh = .7
truth_thresh = 1
#random=1
resize=1.5
iou_thresh=0.2
iou_normalizer=0.05
cls_normalizer=0.5
obj_normalizer=1.0
iou_loss=ciou
nms_kind=diounms
beta_nms=0.6
new_coords=1
max_delta=2
YOLO-5
[route]
layers = 275
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=21
activation=mish
[convolutional]
size=1
stride=1
pad=1
filters=21
activation=logistic
#activation=linear
use linear for Pytorch-Scaled-YOLOv4, and logistic for Darknet
[yolo]
mask = 8,9,10,11
anchors = 13,17, 31,25, 24,51, 61,45, 61,45, 48,102, 119,96, 97,189, 97,189, 217,184, 171,384, 324,451, 324,451, 545,357, 616,618, 1024,1024
classes=2
num=16
jitter=.1
scale_x_y = 2.0
objectness_smooth=1
ignore_thresh = .7
truth_thresh = 1
#random=1
resize=1.5
iou_thresh=0.2
iou_normalizer=0.05
cls_normalizer=0.5
obj_normalizer=1.0
iou_loss=ciou
nms_kind=diounms
beta_nms=0.6
new_coords=1
max_delta=2
YOLO-6
[route]
layers = 288
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=21
activation=mish
[convolutional]
size=1
stride=1
pad=1
filters=21
activation=logistic
#activation=linear
use linear for Pytorch-Scaled-YOLOv4, and logistic for Darknet
[yolo]
mask = 12,13,14,15
anchors = 13,17, 31,25, 24,51, 61,45, 61,45, 48,102, 119,96, 97,189, 97,189, 217,184, 171,384, 324,451, 324,451, 545,357, 616,618, 1024,1024
classes=2
num=16
jitter=.1
scale_x_y = 2.0
objectness_smooth=1
ignore_thresh = .7
truth_thresh = 1
#random=1
resize=1.5
iou_thresh=0.2
iou_normalizer=0.05
cls_normalizer=0.5
obj_normalizer=1.0
iou_loss=ciou
nms_kind=diounms
beta_nms=0.6
new_coords=1
max_delta=2
============ End of Head ============ #`
Error: l.outputs == params.inputs, filters= in the [convolutional]-layer doesn't correspond to classes= or mask= in [yolo]-layer: No error
This is the exact error, but I'm not sure why it appears.
please help me.
If you have any questions, please ask and I will answer.
thx
The text was updated successfully, but these errors were encountered: