Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

hello. I have a question about the darknet yolov4 error. #2648

Open
chanhui6279 opened this issue Jan 9, 2025 · 1 comment
Open

hello. I have a question about the darknet yolov4 error. #2648

chanhui6279 opened this issue Jan 9, 2025 · 1 comment

Comments

@chanhui6279
Copy link

hello. I am a developer who is just starting to use darknet. I created an environment for learning the model and am now trying to learn it, but an error occurred during the learning process, so I am asking this question.
It may be a bit inconvenient because the translation is being done using a translator.

The code I am showing from now on is yolov4-p6.cfg.
`[net]

Testing
#batch=1
#subdivisions=1

Training
batch=64
subdivisions=16
width=64
height=64
channels=3
momentum=0.949
decay=0.0005
angle=0
saturation = 1.5
exposure = 1.5
hue=.1

learning_rate=0.001
burn_in=1000
max_batches = 700
policy=steps
steps=400,450
scales=.1,.1

mosaic=1

letter_box=1

ema_alpha=0.9998

#use_cuda_graph = 1

============ Backbone ============
Stem
0
[convolutional]
batch_normalize=1
filters=32
size=3
stride=1
pad=1
activation=mish

P1
Downsample
[convolutional]
batch_normalize=1
filters=64
size=3
stride=2
pad=1
activation=mish

Split
[convolutional]
batch_normalize=1
filters=32
size=1
stride=1
pad=1
activation=mish

[route]
layers = -2

[convolutional]
batch_normalize=1
filters=32
size=1
stride=1
pad=1
activation=mish

Residual Block
[convolutional]
batch_normalize=1
filters=32
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=32
size=3
stride=1
pad=1
activation=mish

[shortcut]
from=-3
activation=linear

Transition first
[convolutional]
batch_normalize=1
filters=32
size=1
stride=1
pad=1
activation=mish

Merge [-1, -(3k+4)]
[route]
layers = -1,-7

Transition last
10 (previous+7+3k)
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=mish

P2
Downsample
[convolutional]
batch_normalize=1
filters=128
size=3
stride=2
pad=1
activation=mish

Split
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=mish

[route]
layers = -2

[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=mish

Residual Block
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=mish

[shortcut]
from=-3
activation=linear

Transition first
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=mish

Merge [-1, -(3k+4)]
[route]
layers = -1,-13

Transition last
26 (previous+7+3k)
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish

P3
Downsample
[convolutional]
batch_normalize=1
filters=256
size=3
stride=2
pad=1
activation=mish

Split
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish

[route]
layers = -2

[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish

Residual Block
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=mish

[shortcut]
from=-3
activation=linear

Transition first
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish

Merge [-1, -(3k+4)]
[route]
layers = -1,-49

Transition last
78 (previous+7+3k)
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish

P4
Downsample
[convolutional]
batch_normalize=1
filters=512
size=3
stride=2
pad=1
activation=mish

Split
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish

[route]
layers = -2

[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish

Residual Block
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=mish

[shortcut]
from=-3
activation=linear

Transition first
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish

Merge [-1, -(3k+4)]
[route]
layers = -1,-49

Transition last
130 (previous+7+3k)
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish

P5
Downsample
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=2
pad=1
activation=mish

Split
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish

[route]
layers = -2

[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish

Residual Block
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=mish

[shortcut]
from=-3
activation=linear

Transition first
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish

Merge [-1, -(3k+4)]
[route]
layers = -1,-25

Transition last
158 (previous+7+3k)
[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=1
activation=mish

P6
Downsample
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=2
pad=1
activation=mish

Split
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish

[route]
layers = -2

[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish

Residual Block
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=mish

[shortcut]
from=-3
activation=linear

Transition first
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish

Merge [-1, -(3k+4)]
[route]
layers = -1,-25

Transition last
186 (previous+7+3k)
[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=1
activation=mish

============ End of Backbone ============
============ Neck ============
CSPSPP
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish

[route]
layers = -2

[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=mish

[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish

SPP
[maxpool]
stride=1
size=5

[route]
layers=-2

[maxpool]
stride=1
size=9

[route]
layers=-4

[maxpool]
stride=1
size=13

[route]
layers=-1,-3,-5,-6

End SPP
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=mish

[route]
layers = -1, -13

201 (previous+6+5+2k)
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish

End of CSPSPP
FPN-5
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish

[upsample]
stride=2

[route]
layers = 158

[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish

[route]
layers = -1, -3

[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish

Split
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish

[route]
layers = -2

Plain Block
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=mish

[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=mish

[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=mish

Merge [-1, -(2k+2)]
[route]
layers = -1, -8

Transition last
217 (previous+6+4+2k)
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish

FPN-4
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish

[upsample]
stride=2

[route]
layers = 130

[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish

[route]
layers = -1, -3

[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish

Split
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish

[route]
layers = -2

Plain Block
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=mish

[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=mish

[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=mish

Merge [-1, -(2k+2)]
[route]
layers = -1, -8

Transition last
233 (previous+6+4+2k)
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish

FPN-3
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish

[upsample]
stride=2

[route]
layers = 78

[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish

[route]
layers = -1, -3

[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish

Split
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish

[route]
layers = -2

Plain Block
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=128
activation=mish

[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=128
activation=mish

[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=128
activation=mish

Merge [-1, -(2k+2)]
[route]
layers = -1, -8

Transition last
249 (previous+6+4+2k)
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish

PAN-4
[convolutional]
batch_normalize=1
size=3
stride=2
pad=1
filters=256
activation=mish

[route]
layers = -1, 233

[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish

Split
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish

[route]
layers = -2

Plain Block
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=mish

[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=mish

[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=mish

[route]
layers = -1,-8

Transition last
262 (previous+3+4+2k)
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish

PAN-5
[convolutional]
batch_normalize=1
size=3
stride=2
pad=1
filters=512
activation=mish

[route]
layers = -1, 217

[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish

Split
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish

[route]
layers = -2

Plain Block
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=mish

[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=mish

[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=mish

[route]
layers = -1,-8

Transition last
275 (previous+3+4+2k)
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish

PAN-6
[convolutional]
batch_normalize=1
size=3
stride=2
pad=1
filters=512
activation=mish

[route]
layers = -1, 201

[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish

Split
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish

[route]
layers = -2

Plain Block
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=mish

[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=mish

[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=mish

[route]
layers = -1,-8

Transition last
288 (previous+3+4+2k)
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish

============ End of Neck ============
============ Head ============
YOLO-3
[route]
layers = 249

[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=21
activation=mish

[convolutional]
size=1
stride=1
pad=1
filters=21
activation=logistic
#activation=linear

use linear for Pytorch-Scaled-YOLOv4, and logistic for Darknet
[yolo]
mask = 0,1,2,3
anchors = 13,17, 31,25, 24,51, 61,45, 61,45, 48,102, 119,96, 97,189, 97,189, 217,184, 171,384, 324,451, 324,451, 545,357, 616,618, 1024,1024
classes=2
num=16
jitter=.1
scale_x_y = 2.0
objectness_smooth=1
ignore_thresh = .7
truth_thresh = 1
#random=1
resize=1.5
iou_thresh=0.2
iou_normalizer=0.05
cls_normalizer=0.5
obj_normalizer=1.0
iou_loss=ciou
nms_kind=diounms
beta_nms=0.6
new_coords=1
max_delta=2

YOLO-4
[route]
layers = 262

[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=21
activation=mish

[convolutional]
size=1
stride=1
pad=1
filters=21
activation=logistic
#activation=linear

use linear for Pytorch-Scaled-YOLOv4, and logistic for Darknet
[yolo]
mask = 4,5,6,7
anchors = 13,17, 31,25, 24,51, 61,45, 61,45, 48,102, 119,96, 97,189, 97,189, 217,184, 171,384, 324,451, 324,451, 545,357, 616,618, 1024,1024
classes=2
num=16
jitter=.1
scale_x_y = 2.0
objectness_smooth=1
ignore_thresh = .7
truth_thresh = 1
#random=1
resize=1.5
iou_thresh=0.2
iou_normalizer=0.05
cls_normalizer=0.5
obj_normalizer=1.0
iou_loss=ciou
nms_kind=diounms
beta_nms=0.6
new_coords=1
max_delta=2

YOLO-5
[route]
layers = 275

[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=21
activation=mish

[convolutional]
size=1
stride=1
pad=1
filters=21
activation=logistic
#activation=linear

use linear for Pytorch-Scaled-YOLOv4, and logistic for Darknet
[yolo]
mask = 8,9,10,11
anchors = 13,17, 31,25, 24,51, 61,45, 61,45, 48,102, 119,96, 97,189, 97,189, 217,184, 171,384, 324,451, 324,451, 545,357, 616,618, 1024,1024
classes=2
num=16
jitter=.1
scale_x_y = 2.0
objectness_smooth=1
ignore_thresh = .7
truth_thresh = 1
#random=1
resize=1.5
iou_thresh=0.2
iou_normalizer=0.05
cls_normalizer=0.5
obj_normalizer=1.0
iou_loss=ciou
nms_kind=diounms
beta_nms=0.6
new_coords=1
max_delta=2

YOLO-6
[route]
layers = 288

[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=21
activation=mish

[convolutional]
size=1
stride=1
pad=1
filters=21
activation=logistic
#activation=linear

use linear for Pytorch-Scaled-YOLOv4, and logistic for Darknet
[yolo]
mask = 12,13,14,15
anchors = 13,17, 31,25, 24,51, 61,45, 61,45, 48,102, 119,96, 97,189, 97,189, 217,184, 171,384, 324,451, 324,451, 545,357, 616,618, 1024,1024
classes=2
num=16
jitter=.1
scale_x_y = 2.0
objectness_smooth=1
ignore_thresh = .7
truth_thresh = 1
#random=1
resize=1.5
iou_thresh=0.2
iou_normalizer=0.05
cls_normalizer=0.5
obj_normalizer=1.0
iou_loss=ciou
nms_kind=diounms
beta_nms=0.6
new_coords=1
max_delta=2

============ End of Head ============ #`
Error: l.outputs == params.inputs, filters= in the [convolutional]-layer doesn't correspond to classes= or mask= in [yolo]-layer: No error

This is the exact error, but I'm not sure why it appears.
please help me.

If you have any questions, please ask and I will answer.

thx

@chanhui6279
Copy link
Author

There are two classes

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant