-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathgenerators.py
223 lines (171 loc) · 6.49 KB
/
generators.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# Copyright (C) 2019 Computational Science Lab, UPF <http://www.compscience.org/>
# Copying and distribution is allowed under AGPLv3 license
import torch
import rdkit
from rdkit import Chem
from rdkit.Chem import AllChem
from htmd.molecule.util import uniformRandomRotation
from htmd.smallmol.smallmol import SmallMol
from htmd.molecule.voxeldescriptors import _getOccupancyC, _getGridCenters
import numpy as np
import multiprocessing
import math
import random
vocab_list = ["pad", "start", "end",
"C", "c", "N", "n", "S", "s", "P", "O", "o",
"B", "F", "I",
"Cl", "[nH]", "Br", # "X", "Y", "Z",
"1", "2", "3", "4", "5", "6",
"#", "=", "-", "(", ")" # Misc
]
vocab_i2c_v1 = {i: x for i, x in enumerate(vocab_list)}
vocab_c2i_v1 = {vocab_i2c_v1[i]: i for i in vocab_i2c_v1}
resolution = 1.
size = 24
N = [size, size, size]
bbm = (np.zeros(3) - float(size * 1. / 2))
global_centers = _getGridCenters(bbm, N, resolution)
def string_gen_V1(in_string):
out = in_string.replace("Cl", "X").replace("[nH]", "Y").replace("Br", "Z")
return out
def tokenize_v1(in_string, return_torch=True):
caption = []
caption.append(0)
caption.extend([vocab_c2i_v1[x] for x in in_string])
caption.append(1)
if return_torch:
return torch.Tensor(caption)
return caption
def get_aromatic_groups(in_mol):
"""
Obtain groups of aromatic rings
"""
groups = []
ring_atoms = in_mol.GetRingInfo().AtomRings()
for ring_group in ring_atoms:
if all([in_mol.GetAtomWithIdx(x).GetIsAromatic() for x in ring_group]):
groups.append(ring_group)
return groups
def generate_representation(in_smile):
"""
Makes embeddings of Molecule.
"""
try:
m = Chem.MolFromSmiles(in_smile)
mh = Chem.AddHs(m)
AllChem.EmbedMolecule(mh)
Chem.AllChem.MMFFOptimizeMolecule(mh)
m = Chem.RemoveHs(mh)
mol = SmallMol(m)
return mol
except: # Rarely the conformer generation fails
return None
def generate_sigmas(mol):
"""
Calculates sigmas for elements as well as pharmacophores.
Returns sigmas, coordinates and center of ligand.
"""
coords = mol.getCoords()
n_atoms = len(coords)
lig_center = mol.getCenter()
# Calculate all the channels
multisigmas = mol._getChannelRadii()[:, [0, 1, 2, 3, 7]]
aromatic_groups = get_aromatic_groups(mol._mol)
aromatics = [coords[np.array(a_group)].mean(axis=0) for a_group in aromatic_groups]
aromatics = np.array(aromatics)
if len(aromatics) == 0: # Make sure the shape is correct
aromatics = aromatics.reshape(aromatics.shape[0], 3)
# Generate the pharmacophores
aromatic_loc = aromatics + (np.random.rand(*aromatics.shape) - 0.5)
acceptor_ph = (multisigmas[:, 2] > 0.01)
donor_ph = (multisigmas[:, 3] > 0.01)
# Generate locations
acc_loc = coords[acceptor_ph]
acc_loc = acc_loc + (np.random.rand(*acc_loc.shape) - 0.5)
donor_loc = coords[donor_ph]
donor_loc = donor_loc + (np.random.rand(*donor_loc.shape) - 0.5)
coords = np.vstack([coords, aromatic_loc, acc_loc, donor_loc])
final_sigmas = np.zeros((coords.shape[0], 8))
final_sigmas[:n_atoms, :5] = multisigmas
pos1 = n_atoms + len(aromatic_loc) # aromatics end
final_sigmas[n_atoms:(pos1), 5] = 2.
pos2 = pos1 + len(acc_loc)
final_sigmas[pos1:pos2, 6] = 2.
final_sigmas[pos2:, 7] = 2.
return final_sigmas, coords, lig_center
def rotate(coords, rotMat, center=(0,0,0)):
"""
Rotate a selection of atoms by a given rotation around a center
"""
newcoords = coords - center
return np.dot(newcoords, np.transpose(rotMat)) + center
def voxelize(multisigmas, coords, center, displacement=2., rotation=True):
"""
Generates molecule representation.
"""
# Do the rotation
if rotation:
rrot = uniformRandomRotation() # Rotation
coords = rotate(coords, rrot, center=center)
# Do the translation
center = center + (np.random.rand(3) - 0.5) * 2 * displacement
centers2D = global_centers + center
occupancy = _getOccupancyC(coords.astype(np.float32),
centers2D.reshape(-1, 3),
multisigmas).reshape(size, size, size, 8)
return occupancy.astype(np.float32).transpose(3, 0, 1, 2,)
def generate_representation_v1(smile):
"""
Generate voxelized and string representation of a molecule
"""
# Convert smile to 3D structure
smile_str = list(smile)
end_token = smile_str.index(2)
smile_str = "".join([vocab_i2c_v1[i] for i in smile_str[1:end_token]])
mol = generate_representation(smile_str)
if mol is None:
return None
# Generate sigmas
sigmas, coords, lig_center = generate_sigmas(mol)
vox = voxelize(sigmas, coords, lig_center)
return torch.Tensor(vox), torch.Tensor(smile), end_token + 1
def gather_fn(in_data):
"""
Collects and creates a batch.
"""
# Sort a data list by smiles length (descending order)
in_data.sort(key=lambda x: x[2], reverse=True)
images, smiles, lengths = zip(*in_data)
images = torch.stack(images, 0) # Stack images
# Merge smiles (from tuple of 1D tensor to 2D tensor).
# lengths = [len(smile) for smile in smiles]
targets = torch.zeros(len(smiles), max(lengths)).long()
for i, smile in enumerate(smiles):
end = lengths[i]
targets[i, :end] = smile[:end]
return images, targets, lengths
class Batch_prep:
def __init__(self, n_proc=6, mp_pool=None):
if mp_pool:
self.mp = mp_pool
elif n_proc > 1:
self.mp = multiprocessing.Pool(n_proc)
else:
raise NotImplementedError("Use multiprocessing for now!")
def transform_data(self, smiles):
inputs = self.mp.map(generate_representation_v1, smiles)
# Sometimes representation generation fails
inputs = list(filter(lambda x: x is not None, inputs))
return gather_fn(inputs)
def queue_datagen(smiles, batch_size=128, n_proc=12, mp_pool=None):
"""
Continuously produce representations.
"""
n_batches = math.ceil(len(smiles) / batch_size)
sh_indencies = np.arange(len(smiles))
my_batch_prep = Batch_prep(n_proc=n_proc, mp_pool=mp_pool)
while True:
np.random.shuffle(sh_indencies)
for i in range(n_batches):
batch_idx = sh_indencies[i * batch_size:(i + 1) * batch_size]
yield my_batch_prep.transform_data(smiles[batch_idx])