-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfizzbuzz.py
52 lines (43 loc) · 1.09 KB
/
fizzbuzz.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import numpy as np
from snet.train import train
from snet.nn import NeuralNet
from snet.layers import Linear, Tanh
from snet.optim import SGD
def fizz_buzz_encode(x: int):
if x % 15 == 0:
return [0, 0, 0, 1]
elif x % 5 == 0:
return [0, 0, 1, 0]
elif x % 3 == 0:
return [0, 1, 0, 0]
else:
return [1, 0, 0, 0]
def binary_encode(x: int):
"""
10 digit binary encoding of x
"""
return [x >> i & 1 for i in range(10)]
inputs = np.array([
binary_encode(x)
for x in range(101, 1024)
])
targets = np.array([
fizz_buzz_encode(x)
for x in range(101, 1024)
])
net = NeuralNet([
Linear(input_size=10, output_size=50),
Tanh(),
Linear(input_size=50, output_size=4)
])
train(net,
inputs,
targets,
num_epochs=5000,
optimizer=SGD(lr=0.005))
for x in range(1, 101):
predicted = net.forward(binary_encode(x))
predicted_idx = np.argmax(predicted)
actual_idx = np.argmax(fizz_buzz_encode(x))
labels = [str(x), "fizz", "buzz", "fizzbuzz"]
print(x, labels[predicted_idx], labels[actual_idx])