-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlogistic_regression.py
52 lines (39 loc) · 1.54 KB
/
logistic_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import numpy as np
class LogisticRegression:
def __init__(self, lr):
self.lr = lr
self.weights = None
pass
@staticmethod
def sigmoid(x):
return 1 / (1 + np.exp(-x))
def initialize_weigths(self, shape):
self.weights = np.random.normal(0, 0.5, shape)
def update_weights(self, y_true, y_pred, x_train):
self.weights += self.lr * np.sum(np.dot((y_true - y_pred), x_train))
def fit(self, x_train, y_train, epochs=10):
if len(x_train.shape) == 1:
x_train = x_train.reshape(len(x_train), 1)
self.initialize_weigths(x_train.shape[1])
for epoch in range(epochs):
y_pred = np.round(self.sigmoid(np.dot(self.weights, x_train.T)).reshape(y_train.shape))
self.update_weights(y_train, y_pred, x_train)
def predict(self, x):
if len(x.shape) == 1:
x = x.reshape(len(x), 1)
return self.sigmoid(np.dot(self.weights, x.T)).reshape(x.shape[0], )
def score(self, x, y_true):
if len(x.shape) == 1:
x = x.reshape(len(x), 1)
y_pred = np.round(self.predict(x))
accuracy = sum([i == j for i, j in zip(y_pred, y_true)]) / len(y_true)
return 'Accuracy: {}'.format(accuracy)
def main():
x = np.asarray([x for x in range(50)])
y = np.asarray([0 if i < 25 else 1 for i in x])
log = LogisticRegression(0.001)
log.fit(x, y)
print(log.score(np.asarray([1, 12]), np.asarray([0, 1])))
print(log.predict(np.asarray([1, 12])))
if __name__ == '__main__':
main()