-
Notifications
You must be signed in to change notification settings - Fork 72
/
Copy pathlib.rs
702 lines (604 loc) · 23 KB
/
lib.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
// Clippy warns that it's dangerous to derive `PartialEq` and explicitly implement `Hash`, but the
// `pairing::bls12_381` types don't implement `Hash`, so we can't derive it.
#![cfg_attr(feature = "cargo-clippy", allow(derive_hash_xor_eq))]
#[cfg(test)]
extern crate bincode;
extern crate byteorder;
#[macro_use]
extern crate failure;
extern crate init_with;
#[macro_use]
extern crate log;
extern crate pairing;
extern crate rand;
#[macro_use]
extern crate rand_derive;
extern crate ring;
extern crate serde;
#[macro_use]
extern crate serde_derive;
pub mod error;
mod into_fr;
pub mod poly;
pub mod serde_impl;
use std::fmt;
use std::hash::{Hash, Hasher};
use std::ptr::write_volatile;
use byteorder::{BigEndian, ByteOrder};
use init_with::InitWith;
use pairing::bls12_381::{Bls12, Fr, G1, G1Affine, G2, G2Affine};
use pairing::{CurveAffine, CurveProjective, Engine, Field};
use rand::{ChaChaRng, OsRng, Rng, SeedableRng};
use ring::digest;
use error::{Error, Result};
use into_fr::IntoFr;
use poly::{Commitment, Poly};
/// Wrapper for a byte array, whose `Debug` implementation outputs shortened hexadecimal strings.
pub struct HexBytes<'a>(pub &'a [u8]);
impl<'a> fmt::Debug for HexBytes<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
if self.0.len() > 6 {
for byte in &self.0[..3] {
write!(f, "{:02x}", byte)?;
}
write!(f, "..")?;
for byte in &self.0[(self.0.len() - 3)..] {
write!(f, "{:02x}", byte)?;
}
} else {
for byte in self.0 {
write!(f, "{:02x}", byte)?;
}
}
Ok(())
}
}
/// The number of words (`u32`) in a ChaCha RNG seed.
const CHACHA_RNG_SEED_SIZE: usize = 8;
const ERR_OS_RNG: &str = "could not initialize the OS random number generator";
/// A public key.
#[derive(Deserialize, Serialize, Copy, Clone, PartialEq, Eq)]
pub struct PublicKey(#[serde(with = "serde_impl::projective")] G1);
impl Hash for PublicKey {
fn hash<H: Hasher>(&self, state: &mut H) {
self.0.into_affine().into_compressed().as_ref().hash(state);
}
}
impl fmt::Debug for PublicKey {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let uncomp = self.0.into_affine().into_uncompressed();
let bytes = uncomp.as_ref();
write!(f, "PublicKey({:?})", HexBytes(bytes))
}
}
impl PublicKey {
/// Returns `true` if the signature matches the element of `G2`.
pub fn verify_g2<H: Into<G2Affine>>(&self, sig: &Signature, hash: H) -> bool {
Bls12::pairing(self.0, hash) == Bls12::pairing(G1Affine::one(), sig.0)
}
/// Returns `true` if the signature matches the message.
pub fn verify<M: AsRef<[u8]>>(&self, sig: &Signature, msg: M) -> bool {
self.verify_g2(sig, hash_g2(msg))
}
/// Encrypts the message.
pub fn encrypt<M: AsRef<[u8]>>(&self, msg: M) -> Ciphertext {
let r: Fr = OsRng::new().expect(ERR_OS_RNG).gen();
let u = G1Affine::one().mul(r);
let v: Vec<u8> = {
let g = self.0.into_affine().mul(r);
xor_vec(&hash_bytes(g, msg.as_ref().len()), msg.as_ref())
};
let w = hash_g1_g2(u, &v).into_affine().mul(r);
Ciphertext(u, v, w)
}
/// Returns a byte string representation of the public key.
pub fn to_bytes(&self) -> Vec<u8> {
self.0.into_affine().into_compressed().as_ref().to_vec()
}
}
/// A public key share.
#[derive(Deserialize, Serialize, Clone, PartialEq, Eq, Hash)]
pub struct PublicKeyShare(PublicKey);
impl fmt::Debug for PublicKeyShare {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let uncomp = (self.0).0.into_affine().into_uncompressed();
let bytes = uncomp.as_ref();
write!(f, "PublicKeyShare({:?})", HexBytes(bytes))
}
}
impl PublicKeyShare {
/// Returns `true` if the signature matches the element of `G2`.
pub fn verify_g2<H: Into<G2Affine>>(&self, sig: &SignatureShare, hash: H) -> bool {
self.0.verify_g2(&sig.0, hash)
}
/// Returns `true` if the signature matches the message.
pub fn verify<M: AsRef<[u8]>>(&self, sig: &SignatureShare, msg: M) -> bool {
self.verify_g2(sig, hash_g2(msg))
}
/// Returns `true` if the decryption share matches the ciphertext.
pub fn verify_decryption_share(&self, share: &DecryptionShare, ct: &Ciphertext) -> bool {
let Ciphertext(ref u, ref v, ref w) = *ct;
let hash = hash_g1_g2(*u, v);
Bls12::pairing(share.0, hash) == Bls12::pairing((self.0).0, *w)
}
/// Returns a byte string representation of the public key share.
pub fn to_bytes(&self) -> Vec<u8> {
self.0.to_bytes()
}
}
/// A signature.
// Note: Random signatures can be generated for testing.
#[derive(Deserialize, Serialize, Clone, PartialEq, Eq, Rand)]
pub struct Signature(#[serde(with = "serde_impl::projective")] G2);
impl fmt::Debug for Signature {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let uncomp = self.0.into_affine().into_uncompressed();
let bytes = uncomp.as_ref();
write!(f, "Signature({:?})", HexBytes(bytes))
}
}
impl Hash for Signature {
fn hash<H: Hasher>(&self, state: &mut H) {
self.0.into_affine().into_compressed().as_ref().hash(state);
}
}
impl Signature {
pub fn parity(&self) -> bool {
let uncomp = self.0.into_affine().into_uncompressed();
let bytes = uncomp.as_ref();
let xor_bytes: u8 = bytes.iter().fold(0, |result, byte| result ^ byte);
let parity = 0 != xor_bytes.count_ones() % 2;
debug!("Signature: {:?}, output: {}", HexBytes(bytes), parity);
parity
}
}
/// A signature share.
// Note: Random signature shares can be generated for testing.
#[derive(Deserialize, Serialize, Clone, PartialEq, Eq, Rand, Hash)]
pub struct SignatureShare(pub Signature);
impl fmt::Debug for SignatureShare {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let uncomp = (self.0).0.into_affine().into_uncompressed();
let bytes = uncomp.as_ref();
write!(f, "SignatureShare({:?})", HexBytes(bytes))
}
}
/// A secret key.
#[derive(Clone, PartialEq, Eq, Rand)]
pub struct SecretKey(Fr);
impl fmt::Debug for SecretKey {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let uncomp = self.public_key().0.into_affine().into_uncompressed();
let bytes = uncomp.as_ref();
write!(f, "SecretKey({:?})", HexBytes(bytes))
}
}
impl Default for SecretKey {
fn default() -> Self {
SecretKey(Fr::zero())
}
}
impl Drop for SecretKey {
fn drop(&mut self) {
let ptr = self as *mut Self;
unsafe {
write_volatile(ptr, SecretKey::default());
}
}
}
impl SecretKey {
/// Creates a secret key from an existing value
pub fn from_value(f: Fr) -> Self {
SecretKey(f)
}
/// Returns the matching public key.
pub fn public_key(&self) -> PublicKey {
PublicKey(G1Affine::one().mul(self.0))
}
/// Signs the given element of `G2`.
pub fn sign_g2<H: Into<G2Affine>>(&self, hash: H) -> Signature {
Signature(hash.into().mul(self.0))
}
/// Signs the given message.
pub fn sign<M: AsRef<[u8]>>(&self, msg: M) -> Signature {
self.sign_g2(hash_g2(msg))
}
/// Returns the decrypted text, or `None`, if the ciphertext isn't valid.
pub fn decrypt(&self, ct: &Ciphertext) -> Option<Vec<u8>> {
if !ct.verify() {
return None;
}
let Ciphertext(ref u, ref v, _) = *ct;
let g = u.into_affine().mul(self.0);
Some(xor_vec(&hash_bytes(g, v.len()), v))
}
}
/// A secret key share.
#[derive(Clone, PartialEq, Eq, Rand, Default)]
pub struct SecretKeyShare(SecretKey);
impl fmt::Debug for SecretKeyShare {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let uncomp = self.0.public_key().0.into_affine().into_uncompressed();
let bytes = uncomp.as_ref();
write!(f, "SecretKeyShare({:?})", HexBytes(bytes))
}
}
impl SecretKeyShare {
/// Creates a secret key share from an existing value
pub fn from_value(f: Fr) -> Self {
SecretKeyShare(SecretKey::from_value(f))
}
/// Returns the matching public key share.
pub fn public_key_share(&self) -> PublicKeyShare {
PublicKeyShare(self.0.public_key())
}
/// Signs the given element of `G2`.
pub fn sign_g2<H: Into<G2Affine>>(&self, hash: H) -> SignatureShare {
SignatureShare(self.0.sign_g2(hash))
}
/// Signs the given message.
pub fn sign<M: AsRef<[u8]>>(&self, msg: M) -> SignatureShare {
SignatureShare(self.0.sign(msg))
}
/// Returns a decryption share, or `None`, if the ciphertext isn't valid.
pub fn decrypt_share(&self, ct: &Ciphertext) -> Option<DecryptionShare> {
if !ct.verify() {
return None;
}
Some(self.decrypt_share_no_verify(ct))
}
/// Returns a decryption share, without validating the ciphertext.
pub fn decrypt_share_no_verify(&self, ct: &Ciphertext) -> DecryptionShare {
DecryptionShare(ct.0.into_affine().mul((self.0).0))
}
}
/// An encrypted message.
#[derive(Deserialize, Serialize, Debug, Clone, PartialEq, Eq)]
pub struct Ciphertext(
#[serde(with = "serde_impl::projective")] G1,
Vec<u8>,
#[serde(with = "serde_impl::projective")] G2,
);
impl Hash for Ciphertext {
fn hash<H: Hasher>(&self, state: &mut H) {
let Ciphertext(ref u, ref v, ref w) = *self;
u.into_affine().into_compressed().as_ref().hash(state);
v.hash(state);
w.into_affine().into_compressed().as_ref().hash(state);
}
}
impl Ciphertext {
/// Returns `true` if this is a valid ciphertext. This check is necessary to prevent
/// chosen-ciphertext attacks.
pub fn verify(&self) -> bool {
let Ciphertext(ref u, ref v, ref w) = *self;
let hash = hash_g1_g2(*u, v);
Bls12::pairing(G1Affine::one(), *w) == Bls12::pairing(*u, hash)
}
}
/// A decryption share. A threshold of decryption shares can be used to decrypt a message.
#[derive(Clone, Deserialize, Serialize, Debug, PartialEq, Eq, Rand)]
pub struct DecryptionShare(#[serde(with = "serde_impl::projective")] G1);
impl Hash for DecryptionShare {
fn hash<H: Hasher>(&self, state: &mut H) {
self.0.into_affine().into_compressed().as_ref().hash(state);
}
}
/// A public key and an associated set of public key shares.
#[derive(Serialize, Deserialize, Clone, Debug, PartialEq, Eq)]
pub struct PublicKeySet {
/// The coefficients of a polynomial whose value at `0` is the "master key", and value at
/// `i + 1` is key share number `i`.
commit: Commitment,
}
impl Hash for PublicKeySet {
fn hash<H: Hasher>(&self, state: &mut H) {
self.commit.hash(state);
}
}
impl From<Commitment> for PublicKeySet {
fn from(commit: Commitment) -> PublicKeySet {
PublicKeySet { commit }
}
}
impl PublicKeySet {
/// Returns the threshold `t`: any set of `t + 1` signature shares can be combined into a full
/// signature.
pub fn threshold(&self) -> usize {
self.commit.degree()
}
/// Returns the public key.
pub fn public_key(&self) -> PublicKey {
PublicKey(self.commit.coeff[0])
}
/// Returns the `i`-th public key share.
pub fn public_key_share<T: IntoFr>(&self, i: T) -> PublicKeyShare {
let value = self.commit.evaluate(into_fr_plus_1(i));
PublicKeyShare(PublicKey(value))
}
/// Combines the shares into a signature that can be verified with the main public key.
pub fn combine_signatures<'a, T, I>(&self, shares: I) -> Result<Signature>
where
I: IntoIterator<Item = (T, &'a SignatureShare)>,
T: IntoFr,
{
let samples = shares.into_iter().map(|(i, share)| (i, &(share.0).0));
Ok(Signature(interpolate(self.commit.degree() + 1, samples)?))
}
/// Combines the shares to decrypt the ciphertext.
pub fn decrypt<'a, T, I>(&self, shares: I, ct: &Ciphertext) -> Result<Vec<u8>>
where
I: IntoIterator<Item = (T, &'a DecryptionShare)>,
T: IntoFr,
{
let samples = shares.into_iter().map(|(i, share)| (i, &share.0));
let g = interpolate(self.commit.degree() + 1, samples)?;
Ok(xor_vec(&hash_bytes(g, ct.1.len()), &ct.1))
}
}
/// A secret key and an associated set of secret key shares.
pub struct SecretKeySet {
/// The coefficients of a polynomial whose value at `0` is the "master key", and value at
/// `i + 1` is key share number `i`.
poly: Poly,
}
impl From<Poly> for SecretKeySet {
fn from(poly: Poly) -> SecretKeySet {
SecretKeySet { poly }
}
}
impl SecretKeySet {
/// Creates a set of secret key shares, where any `threshold + 1` of them can collaboratively
/// sign and decrypt.
pub fn random<R: Rng>(threshold: usize, rng: &mut R) -> Self {
SecretKeySet {
poly: Poly::random(threshold, rng),
}
}
/// Returns the threshold `t`: any set of `t + 1` signature shares can be combined into a full
/// signature.
pub fn threshold(&self) -> usize {
self.poly.degree()
}
/// Returns the `i`-th secret key share.
pub fn secret_key_share<T: IntoFr>(&self, i: T) -> SecretKeyShare {
let value = self.poly.evaluate(into_fr_plus_1(i));
SecretKeyShare(SecretKey(value))
}
/// Returns the corresponding public key set. That information can be shared publicly.
pub fn public_keys(&self) -> PublicKeySet {
PublicKeySet {
commit: self.poly.commitment(),
}
}
/// Returns the secret master key.
#[cfg(test)]
fn secret_key(&self) -> SecretKey {
SecretKey(self.poly.evaluate(0))
}
}
/// Returns a hash of the given message in `G2`.
fn hash_g2<M: AsRef<[u8]>>(msg: M) -> G2 {
let digest = digest::digest(&digest::SHA256, msg.as_ref());
let seed = <[u32; CHACHA_RNG_SEED_SIZE]>::init_with_indices(|i| {
BigEndian::read_u32(&digest.as_ref()[(4 * i)..(4 * i + 4)])
});
let mut rng = ChaChaRng::from_seed(&seed);
rng.gen()
}
/// Returns a hash of the group element and message, in the second group.
fn hash_g1_g2<M: AsRef<[u8]>>(g1: G1, msg: M) -> G2 {
// If the message is large, hash it, otherwise copy it.
// TODO: Benchmark and optimize the threshold.
let mut msg = if msg.as_ref().len() > 64 {
let digest = digest::digest(&digest::SHA256, msg.as_ref());
digest.as_ref().to_vec()
} else {
msg.as_ref().to_vec()
};
msg.extend(g1.into_affine().into_compressed().as_ref());
hash_g2(&msg)
}
/// Returns a hash of the group element with the specified length in bytes.
fn hash_bytes(g1: G1, len: usize) -> Vec<u8> {
let digest = digest::digest(&digest::SHA256, g1.into_affine().into_compressed().as_ref());
let seed = <[u32; CHACHA_RNG_SEED_SIZE]>::init_with_indices(|i| {
BigEndian::read_u32(&digest.as_ref()[(4 * i)..(4 * i + 4)])
});
let mut rng = ChaChaRng::from_seed(&seed);
rng.gen_iter().take(len).collect()
}
/// Returns the bitwise xor.
fn xor_vec(x: &[u8], y: &[u8]) -> Vec<u8> {
x.iter().zip(y).map(|(a, b)| a ^ b).collect()
}
/// Given a list of `t` samples `(i - 1, f(i) * g)` for a polynomial `f` of degree `t - 1`, and a
/// group generator `g`, returns `f(0) * g`.
fn interpolate<'a, C, T, I>(t: usize, items: I) -> Result<C>
where
C: CurveProjective<Scalar = Fr>,
I: IntoIterator<Item = (T, &'a C)>,
T: IntoFr,
{
let samples: Vec<_> = items
.into_iter()
.map(|(i, sample)| (into_fr_plus_1(i), sample))
.collect();
if samples.len() < t {
return Err(Error::NotEnoughShares);
}
let mut result = C::zero();
let mut indexes = Vec::new();
for (x, sample) in samples.iter().take(t) {
if indexes.contains(x) {
return Err(Error::DuplicateEntry);
}
indexes.push(x.clone());
// Compute the value at 0 of the Lagrange polynomial that is `0` at the other data
// points but `1` at `x`.
let mut l0 = C::Scalar::one();
for (x0, _) in samples.iter().take(t).filter(|(x0, _)| x0 != x) {
let mut denom = *x0;
denom.sub_assign(x);
l0.mul_assign(x0);
l0.mul_assign(&denom.inverse().expect("indices are different"));
}
result.add_assign(&sample.into_affine().mul(l0));
}
Ok(result)
}
fn into_fr_plus_1<I: IntoFr>(x: I) -> Fr {
let mut result = Fr::one();
result.add_assign(&x.into_fr());
result
}
#[cfg(test)]
mod tests {
use super::*;
use std::collections::BTreeMap;
use rand::{self, random};
#[test]
fn test_simple_sig() {
let sk0: SecretKey = random();
let sk1: SecretKey = random();
let pk0 = sk0.public_key();
let msg0 = b"Real news";
let msg1 = b"Fake news";
assert!(pk0.verify(&sk0.sign(msg0), msg0));
assert!(!pk0.verify(&sk1.sign(msg0), msg0)); // Wrong key.
assert!(!pk0.verify(&sk0.sign(msg1), msg0)); // Wrong message.
}
#[test]
fn test_threshold_sig() {
let mut rng = rand::thread_rng();
let sk_set = SecretKeySet::random(3, &mut rng);
let pk_set = sk_set.public_keys();
// Make sure the keys are different, and the first coefficient is the main key.
assert_ne!(pk_set.public_key(), pk_set.public_key_share(0).0);
assert_ne!(pk_set.public_key(), pk_set.public_key_share(1).0);
assert_ne!(pk_set.public_key(), pk_set.public_key_share(2).0);
// Make sure we don't hand out the main secret key to anyone.
assert_ne!(sk_set.secret_key(), sk_set.secret_key_share(0).0);
assert_ne!(sk_set.secret_key(), sk_set.secret_key_share(1).0);
assert_ne!(sk_set.secret_key(), sk_set.secret_key_share(2).0);
let msg = "Totally real news";
// The threshold is 3, so 4 signature shares will suffice to recreate the share.
let sigs: BTreeMap<_, _> = [5, 8, 7, 10]
.into_iter()
.map(|i| (*i, sk_set.secret_key_share(*i).sign(msg)))
.collect();
// Each of the shares is a valid signature matching its public key share.
for (i, sig) in &sigs {
assert!(pk_set.public_key_share(*i).verify(sig, msg));
}
// Combined, they produce a signature matching the main public key.
let sig = pk_set.combine_signatures(&sigs).expect("signatures match");
assert!(pk_set.public_key().verify(&sig, msg));
// A different set of signatories produces the same signature.
let sigs2: BTreeMap<_, _> = [42, 43, 44, 45]
.into_iter()
.map(|i| (*i, sk_set.secret_key_share(*i).sign(msg)))
.collect();
let sig2 = pk_set.combine_signatures(&sigs2).expect("signatures match");
assert_eq!(sig, sig2);
}
#[test]
fn test_simple_enc() {
let sk_bob: SecretKey = random();
let sk_eve: SecretKey = random();
let pk_bob = sk_bob.public_key();
let msg = b"Muffins in the canteen today! Don't tell Eve!";
let ciphertext = pk_bob.encrypt(&msg[..]);
assert!(ciphertext.verify());
// Bob can decrypt the message.
let decrypted = sk_bob.decrypt(&ciphertext).expect("valid ciphertext");
assert_eq!(msg[..], decrypted[..]);
// Eve can't.
let decrypted_eve = sk_eve.decrypt(&ciphertext).expect("valid ciphertext");
assert_ne!(msg[..], decrypted_eve[..]);
// Eve tries to trick Bob into decrypting `msg` xor `v`, but it doesn't validate.
let Ciphertext(u, v, w) = ciphertext;
let fake_ciphertext = Ciphertext(u, vec![0; v.len()], w);
assert!(!fake_ciphertext.verify());
assert_eq!(None, sk_bob.decrypt(&fake_ciphertext));
}
#[test]
fn test_threshold_enc() {
let mut rng = rand::thread_rng();
let sk_set = SecretKeySet::random(3, &mut rng);
let pk_set = sk_set.public_keys();
let msg = b"Totally real news";
let ciphertext = pk_set.public_key().encrypt(&msg[..]);
// The threshold is 3, so 4 signature shares will suffice to decrypt.
let shares: BTreeMap<_, _> = [5, 8, 7, 10]
.into_iter()
.map(|i| {
let ski = sk_set.secret_key_share(*i);
let share = ski.decrypt_share(&ciphertext).expect("ciphertext is valid");
(*i, share)
})
.collect();
// Each of the shares is valid matching its public key share.
for (i, share) in &shares {
pk_set
.public_key_share(*i)
.verify_decryption_share(share, &ciphertext);
}
// Combined, they can decrypt the message.
let decrypted = pk_set
.decrypt(&shares, &ciphertext)
.expect("decryption shares match");
assert_eq!(msg[..], decrypted[..]);
}
/// Some basic sanity checks for the `hash_g2` function.
#[test]
fn test_hash_g2() {
let mut rng = rand::thread_rng();
let msg: Vec<u8> = (0..1000).map(|_| rng.gen()).collect();
let msg_end0: Vec<u8> = msg.iter().chain(b"end0").cloned().collect();
let msg_end1: Vec<u8> = msg.iter().chain(b"end1").cloned().collect();
assert_eq!(hash_g2(&msg), hash_g2(&msg));
assert_ne!(hash_g2(&msg), hash_g2(&msg_end0));
assert_ne!(hash_g2(&msg_end0), hash_g2(&msg_end1));
}
/// Some basic sanity checks for the `hash_g1_g2` function.
#[test]
fn test_hash_g1_g2() {
let mut rng = rand::thread_rng();
let msg: Vec<u8> = (0..1000).map(|_| rng.gen()).collect();
let msg_end0: Vec<u8> = msg.iter().chain(b"end0").cloned().collect();
let msg_end1: Vec<u8> = msg.iter().chain(b"end1").cloned().collect();
let g0 = rng.gen();
let g1 = rng.gen();
assert_eq!(hash_g1_g2(g0, &msg), hash_g1_g2(g0, &msg));
assert_ne!(hash_g1_g2(g0, &msg), hash_g1_g2(g0, &msg_end0));
assert_ne!(hash_g1_g2(g0, &msg_end0), hash_g1_g2(g0, &msg_end1));
assert_ne!(hash_g1_g2(g0, &msg), hash_g1_g2(g1, &msg));
}
/// Some basic sanity checks for the `hash_bytes` function.
#[test]
fn test_hash_bytes() {
let mut rng = rand::thread_rng();
let g0 = rng.gen();
let g1 = rng.gen();
let hash = hash_bytes;
assert_eq!(hash(g0, 5), hash(g0, 5));
assert_ne!(hash(g0, 5), hash(g1, 5));
assert_eq!(5, hash(g0, 5).len());
assert_eq!(6, hash(g0, 6).len());
assert_eq!(20, hash(g0, 20).len());
}
#[test]
fn test_serde() {
use bincode;
let sk: SecretKey = random();
let sig = sk.sign("Please sign here: ______");
let pk = sk.public_key();
let ser_pk = bincode::serialize(&pk).expect("serialize public key");
let deser_pk = bincode::deserialize(&ser_pk).expect("deserialize public key");
assert_eq!(pk, deser_pk);
let ser_sig = bincode::serialize(&sig).expect("serialize signature");
let deser_sig = bincode::deserialize(&ser_sig).expect("deserialize signature");
assert_eq!(sig, deser_sig);
}
}