-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcreate_mask.py
89 lines (70 loc) · 2.74 KB
/
create_mask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import torch
from torchvision.utils import save_image
from PIL import Image
import numpy as np
import os
from torchvision import transforms
from model import Generator, Encoder
import tqdm
def calculate_mask_for_image(opt, input_image_path, img_idx, set='train'):
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
generator = Generator(opt)
encoder = Encoder(opt)
generator.load_state_dict(torch.load("results/generator", map_location=device))
encoder.load_state_dict(torch.load("results/encoder", map_location=device))
generator.to(device).eval()
encoder.to(device).eval()
transform = transforms.Compose([
transforms.Resize([opt.img_size] * 2),
transforms.ToTensor(),
transforms.Normalize([0.5] * opt.channels, [0.5] * opt.channels)
])
input_image = Image.open(input_image_path).convert('RGB')
input_image_original_size = np.array(input_image) # Save the original size
input_image = transform(input_image).unsqueeze(0).to(device)
with torch.no_grad():
real_z = encoder(input_image)
reconstructed_img = generator(real_z)
original_image_np = input_image.squeeze().cpu().numpy()
reconstructed_image_np = reconstructed_img.squeeze().cpu().numpy()
difference = np.abs(original_image_np - reconstructed_image_np)
normalized_difference = difference / np.max(difference)
threshold = 0.69
mask = normalized_difference > threshold
mask_resized = (mask * 255).astype(np.uint8)
mask_resized = mask_resized[0] + mask_resized[1] + mask_resized[2]
mask_resized = Image.fromarray(mask_resized, mode='L').resize((960, 600), Image.NEAREST)
if set == 'train':
os.makedirs("results/masks_train", exist_ok=True)
mask_resized.save(f"results/masks_train/{img_idx}.png")
elif set == 'test':
os.makedirs("results/masks_test", exist_ok=True)
mask_resized.save(f"results/masks_test/{img_idx}.png")
else:
raise ValueError(f"Unknown set {set}")
return mask_resized
import argparse
opt = argparse.Namespace(
test_root='results/train/class0/images',
n_grid_lines=10,
latent_dim=100,
img_size=64,
channels=3,
n_iters=None
)
for i in range(1, 4238):
input_image_path = f"train/images/class0/{i}.bmp"
calculate_mask_for_image(opt, input_image_path, i, set='train')
tqdm.tqdm.write(f"Processed {i} images in train")
opt = argparse.Namespace(
test_root='results/test/class0/images',
n_grid_lines=10,
latent_dim=100,
img_size=64,
channels=3,
n_iters=None
)
for i in range(1, 2225):
input_image_path = f"test/images/class0/{i}.bmp"
calculate_mask_for_image(opt, input_image_path, i, set='test')
tqdm.tqdm.write(f"Processed {i} images in test")