-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathvat.py
51 lines (41 loc) · 1.85 KB
/
vat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import torch
import torch.nn as nn
from consistency_losses import KLDivLossWithLogits
from utils import disable_tracking_bn_stats
def l2_normalize(d):
d_reshaped = d.view(d.size(0), -1, *(1 for _ in range(d.dim() - 2)))
d /= torch.norm(d_reshaped, dim=1, keepdim=True) + 1e-8
return d
class VirtualAdversarialPerturbationGenerator(nn.Module):
def __init__(self, feature_extractor, classifier, xi=1e-6, eps=3.5, ip=1):
"""VAT loss
:param xi: hyperparameter of VAT (default: 10.0)
:param eps: hyperparameter of VAT (default: 1.0)
:param ip: iteration times of computing adv noise (default: 1)
"""
super().__init__()
self.feature_extractor = feature_extractor
self.classifier = classifier
self.xi = xi
self.eps = eps
self.ip = ip
self.kl_div = KLDivLossWithLogits()
def forward(self, inputs):
with disable_tracking_bn_stats(self.feature_extractor):
with disable_tracking_bn_stats(self.classifier):
features, _ = self.feature_extractor(inputs)
logits = self.classifier(features).detach()
# prepare random unit tensor
d = l2_normalize(torch.randn_like(inputs).to(inputs.device))
# calc adversarial direction
for _ in range(self.ip):
x_hat = inputs + self.xi * d
x_hat.requires_grad = True
features_hat, _ = self.feature_extractor(x_hat)
logits_hat = self.classifier(features_hat)
adv_distance = self.kl_div(logits_hat, logits)
adv_distance.backward()
d = l2_normalize(x_hat.grad)
self.feature_extractor.zero_grad()
r_adv = d * self.eps
return r_adv.detach(), logits