-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathex22.cpp
599 lines (539 loc) · 19.8 KB
/
ex22.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
// MFEM Example 22
//
// Compile with: make ex22
//
// Sample runs: ex22 -m ../data/inline-segment.mesh -o 3
// ex22 -m ../data/inline-tri.mesh -o 3
// ex22 -m ../data/inline-quad.mesh -o 3
// ex22 -m ../data/inline-quad.mesh -o 3 -p 1
// ex22 -m ../data/inline-quad.mesh -o 3 -p 1 -pa
// ex22 -m ../data/inline-quad.mesh -o 3 -p 2
// ex22 -m ../data/inline-tet.mesh -o 2
// ex22 -m ../data/inline-hex.mesh -o 2
// ex22 -m ../data/inline-hex.mesh -o 2 -p 1
// ex22 -m ../data/inline-hex.mesh -o 2 -p 2
// ex22 -m ../data/inline-hex.mesh -o 2 -p 2 -pa
// ex22 -m ../data/inline-wedge.mesh -o 1
// ex22 -m ../data/inline-pyramid.mesh -o 1
// ex22 -m ../data/star.mesh -r 1 -o 2 -sigma 10.0
//
// Device sample runs:
// ex22 -m ../data/inline-quad.mesh -o 3 -p 1 -pa -d cuda
// ex22 -m ../data/inline-hex.mesh -o 2 -p 2 -pa -d cuda
// ex22 -m ../data/star.mesh -r 1 -o 2 -sigma 10.0 -pa -d cuda
//
// Description: This example code demonstrates the use of MFEM to define and
// solve simple complex-valued linear systems. It implements three
// variants of a damped harmonic oscillator:
//
// 1) A scalar H1 field
// -Div(a Grad u) - omega^2 b u + i omega c u = 0
//
// 2) A vector H(Curl) field
// Curl(a Curl u) - omega^2 b u + i omega c u = 0
//
// 3) A vector H(Div) field
// -Grad(a Div u) - omega^2 b u + i omega c u = 0
//
// In each case the field is driven by a forced oscillation, with
// angular frequency omega, imposed at the boundary or a portion
// of the boundary.
//
// In electromagnetics, the coefficients are typically named the
// permeability, mu = 1/a, permittivity, epsilon = b, and
// conductivity, sigma = c. The user can specify these constants
// using either set of names.
//
// The example also demonstrates how to display a time-varying
// solution as a sequence of fields sent to a single GLVis socket.
//
// We recommend viewing examples 1, 3 and 4 before viewing this
// example.
#include "mfem.hpp"
#include <fstream>
#include <iostream>
using namespace std;
using namespace mfem;
static double mu_ = 1.0;
static double epsilon_ = 1.0;
static double sigma_ = 20.0;
static double omega_ = 10.0;
double u0_real_exact(const Vector &);
double u0_imag_exact(const Vector &);
void u1_real_exact(const Vector &, Vector &);
void u1_imag_exact(const Vector &, Vector &);
void u2_real_exact(const Vector &, Vector &);
void u2_imag_exact(const Vector &, Vector &);
bool check_for_inline_mesh(const char * mesh_file);
int main(int argc, char *argv[])
{
// 1. Parse command-line options.
const char *mesh_file = "../data/inline-quad.mesh";
int ref_levels = 0;
int order = 1;
int prob = 0;
double freq = -1.0;
double a_coef = 0.0;
bool visualization = 1;
bool herm_conv = true;
bool exact_sol = true;
bool pa = false;
const char *device_config = "cpu";
OptionsParser args(argc, argv);
args.AddOption(&mesh_file, "-m", "--mesh",
"Mesh file to use.");
args.AddOption(&ref_levels, "-r", "--refine",
"Number of times to refine the mesh uniformly.");
args.AddOption(&order, "-o", "--order",
"Finite element order (polynomial degree).");
args.AddOption(&prob, "-p", "--problem-type",
"Choose between 0: H_1, 1: H(Curl), or 2: H(Div) "
"damped harmonic oscillator.");
args.AddOption(&a_coef, "-a", "--stiffness-coef",
"Stiffness coefficient (spring constant or 1/mu).");
args.AddOption(&epsilon_, "-b", "--mass-coef",
"Mass coefficient (or epsilon).");
args.AddOption(&sigma_, "-c", "--damping-coef",
"Damping coefficient (or sigma).");
args.AddOption(&mu_, "-mu", "--permeability",
"Permeability of free space (or 1/(spring constant)).");
args.AddOption(&epsilon_, "-eps", "--permittivity",
"Permittivity of free space (or mass constant).");
args.AddOption(&sigma_, "-sigma", "--conductivity",
"Conductivity (or damping constant).");
args.AddOption(&freq, "-f", "--frequency",
"Frequency (in Hz).");
args.AddOption(&herm_conv, "-herm", "--hermitian", "-no-herm",
"--no-hermitian", "Use convention for Hermitian operators.");
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.AddOption(&pa, "-pa", "--partial-assembly", "-no-pa",
"--no-partial-assembly", "Enable Partial Assembly.");
args.AddOption(&device_config, "-d", "--device",
"Device configuration string, see Device::Configure().");
args.Parse();
if (!args.Good())
{
args.PrintUsage(cout);
return 1;
}
args.PrintOptions(cout);
MFEM_VERIFY(prob >= 0 && prob <=2,
"Unrecognized problem type: " << prob);
if ( a_coef != 0.0 )
{
mu_ = 1.0 / a_coef;
}
if ( freq > 0.0 )
{
omega_ = 2.0 * M_PI * freq;
}
exact_sol = check_for_inline_mesh(mesh_file);
if (exact_sol)
{
cout << "Identified a mesh with known exact solution" << endl;
}
ComplexOperator::Convention conv =
herm_conv ? ComplexOperator::HERMITIAN : ComplexOperator::BLOCK_SYMMETRIC;
// 2. Enable hardware devices such as GPUs, and programming models such as
// CUDA, OCCA, RAJA and OpenMP based on command line options.
Device device(device_config);
device.Print();
// 3. Read the mesh from the given mesh file. We can handle triangular,
// quadrilateral, tetrahedral, hexahedral, surface and volume meshes
// with the same code.
Mesh *mesh = new Mesh(mesh_file, 1, 1);
int dim = mesh->Dimension();
// 4. Refine the mesh to increase resolution. In this example we do
// 'ref_levels' of uniform refinement where the user specifies
// the number of levels with the '-r' option.
for (int l = 0; l < ref_levels; l++)
{
mesh->UniformRefinement();
}
// 5. Define a finite element space on the mesh. Here we use continuous
// Lagrange, Nedelec, or Raviart-Thomas finite elements of the specified
// order.
if (dim == 1 && prob != 0 )
{
cout << "Switching to problem type 0, H1 basis functions, "
<< "for 1 dimensional mesh." << endl;
prob = 0;
}
FiniteElementCollection *fec = NULL;
switch (prob)
{
case 0: fec = new H1_FECollection(order, dim); break;
case 1: fec = new ND_FECollection(order, dim); break;
case 2: fec = new RT_FECollection(order - 1, dim); break;
default: break; // This should be unreachable
}
FiniteElementSpace *fespace = new FiniteElementSpace(mesh, fec);
cout << "Number of finite element unknowns: " << fespace->GetTrueVSize()
<< endl;
// 6. Determine the list of true (i.e. conforming) essential boundary dofs.
// In this example, the boundary conditions are defined based on the type
// of mesh and the problem type.
Array<int> ess_tdof_list;
Array<int> ess_bdr;
if (mesh->bdr_attributes.Size())
{
ess_bdr.SetSize(mesh->bdr_attributes.Max());
ess_bdr = 1;
fespace->GetEssentialTrueDofs(ess_bdr, ess_tdof_list);
}
// 7. Set up the linear form b(.) which corresponds to the right-hand side of
// the FEM linear system.
ComplexLinearForm b(fespace, conv);
b.Vector::operator=(0.0);
// 8. Define the solution vector u as a complex finite element grid function
// corresponding to fespace. Initialize u with initial guess of 1+0i or
// the exact solution if it is known.
ComplexGridFunction u(fespace);
ComplexGridFunction * u_exact = NULL;
if (exact_sol) { u_exact = new ComplexGridFunction(fespace); }
FunctionCoefficient u0_r(u0_real_exact);
FunctionCoefficient u0_i(u0_imag_exact);
VectorFunctionCoefficient u1_r(dim, u1_real_exact);
VectorFunctionCoefficient u1_i(dim, u1_imag_exact);
VectorFunctionCoefficient u2_r(dim, u2_real_exact);
VectorFunctionCoefficient u2_i(dim, u2_imag_exact);
ConstantCoefficient zeroCoef(0.0);
ConstantCoefficient oneCoef(1.0);
Vector zeroVec(dim); zeroVec = 0.0;
Vector oneVec(dim); oneVec = 0.0; oneVec[(prob==2)?(dim-1):0] = 1.0;
VectorConstantCoefficient zeroVecCoef(zeroVec);
VectorConstantCoefficient oneVecCoef(oneVec);
switch (prob)
{
case 0:
if (exact_sol)
{
u.ProjectBdrCoefficient(u0_r, u0_i, ess_bdr);
u_exact->ProjectCoefficient(u0_r, u0_i);
}
else
{
u.ProjectBdrCoefficient(oneCoef, zeroCoef, ess_bdr);
}
break;
case 1:
if (exact_sol)
{
u.ProjectBdrCoefficientTangent(u1_r, u1_i, ess_bdr);
u_exact->ProjectCoefficient(u1_r, u1_i);
}
else
{
u.ProjectBdrCoefficientTangent(oneVecCoef, zeroVecCoef, ess_bdr);
}
break;
case 2:
if (exact_sol)
{
u.ProjectBdrCoefficientNormal(u2_r, u2_i, ess_bdr);
u_exact->ProjectCoefficient(u2_r, u2_i);
}
else
{
u.ProjectBdrCoefficientNormal(oneVecCoef, zeroVecCoef, ess_bdr);
}
break;
default: break; // This should be unreachable
}
if (visualization && exact_sol)
{
char vishost[] = "localhost";
int visport = 19916;
socketstream sol_sock_r(vishost, visport);
socketstream sol_sock_i(vishost, visport);
sol_sock_r.precision(8);
sol_sock_i.precision(8);
sol_sock_r << "solution\n" << *mesh << u_exact->real()
<< "window_title 'Exact: Real Part'" << flush;
sol_sock_i << "solution\n" << *mesh << u_exact->imag()
<< "window_title 'Exact: Imaginary Part'" << flush;
}
// 9. Set up the sesquilinear form a(.,.) on the finite element space
// corresponding to the damped harmonic oscillator operator of the
// appropriate type:
//
// 0) A scalar H1 field
// -Div(a Grad) - omega^2 b + i omega c
//
// 1) A vector H(Curl) field
// Curl(a Curl) - omega^2 b + i omega c
//
// 2) A vector H(Div) field
// -Grad(a Div) - omega^2 b + i omega c
//
ConstantCoefficient stiffnessCoef(1.0/mu_);
ConstantCoefficient massCoef(-omega_ * omega_ * epsilon_);
ConstantCoefficient lossCoef(omega_ * sigma_);
ConstantCoefficient negMassCoef(omega_ * omega_ * epsilon_);
SesquilinearForm *a = new SesquilinearForm(fespace, conv);
if (pa) { a->SetAssemblyLevel(AssemblyLevel::PARTIAL); }
switch (prob)
{
case 0:
a->AddDomainIntegrator(new DiffusionIntegrator(stiffnessCoef),
NULL);
a->AddDomainIntegrator(new MassIntegrator(massCoef),
new MassIntegrator(lossCoef));
break;
case 1:
a->AddDomainIntegrator(new CurlCurlIntegrator(stiffnessCoef),
NULL);
a->AddDomainIntegrator(new VectorFEMassIntegrator(massCoef),
new VectorFEMassIntegrator(lossCoef));
break;
case 2:
a->AddDomainIntegrator(new DivDivIntegrator(stiffnessCoef),
NULL);
a->AddDomainIntegrator(new VectorFEMassIntegrator(massCoef),
new VectorFEMassIntegrator(lossCoef));
break;
default: break; // This should be unreachable
}
// 9a. Set up the bilinear form for the preconditioner corresponding to the
// appropriate operator
//
// 0) A scalar H1 field
// -Div(a Grad) - omega^2 b + omega c
//
// 1) A vector H(Curl) field
// Curl(a Curl) + omega^2 b + omega c
//
// 2) A vector H(Div) field
// -Grad(a Div) - omega^2 b + omega c
//
BilinearForm *pcOp = new BilinearForm(fespace);
if (pa) { pcOp->SetAssemblyLevel(AssemblyLevel::PARTIAL); }
switch (prob)
{
case 0:
pcOp->AddDomainIntegrator(new DiffusionIntegrator(stiffnessCoef));
pcOp->AddDomainIntegrator(new MassIntegrator(massCoef));
pcOp->AddDomainIntegrator(new MassIntegrator(lossCoef));
break;
case 1:
pcOp->AddDomainIntegrator(new CurlCurlIntegrator(stiffnessCoef));
pcOp->AddDomainIntegrator(new VectorFEMassIntegrator(negMassCoef));
pcOp->AddDomainIntegrator(new VectorFEMassIntegrator(lossCoef));
break;
case 2:
pcOp->AddDomainIntegrator(new DivDivIntegrator(stiffnessCoef));
pcOp->AddDomainIntegrator(new VectorFEMassIntegrator(massCoef));
pcOp->AddDomainIntegrator(new VectorFEMassIntegrator(lossCoef));
break;
default: break; // This should be unreachable
}
// 10. Assemble the form and the corresponding linear system, applying any
// necessary transformations such as: assembly, eliminating boundary
// conditions, conforming constraints for non-conforming AMR, etc.
a->Assemble();
pcOp->Assemble();
OperatorHandle A;
Vector B, U;
a->FormLinearSystem(ess_tdof_list, u, b, A, U, B);
cout << "Size of linear system: " << A->Width() << endl << endl;
// 11. Define and apply a GMRES solver for AU=B with a block diagonal
// preconditioner based on the appropriate sparse smoother.
{
Array<int> blockOffsets;
blockOffsets.SetSize(3);
blockOffsets[0] = 0;
blockOffsets[1] = A->Height() / 2;
blockOffsets[2] = A->Height() / 2;
blockOffsets.PartialSum();
BlockDiagonalPreconditioner BDP(blockOffsets);
Operator * pc_r = NULL;
Operator * pc_i = NULL;
if (pa)
{
pc_r = new OperatorJacobiSmoother(*pcOp, ess_tdof_list);
}
else
{
OperatorHandle PCOp;
pcOp->SetDiagonalPolicy(mfem::Operator::DIAG_ONE);
pcOp->FormSystemMatrix(ess_tdof_list, PCOp);
switch (prob)
{
case 0:
pc_r = new DSmoother(*PCOp.As<SparseMatrix>());
break;
case 1:
pc_r = new GSSmoother(*PCOp.As<SparseMatrix>());
break;
case 2:
pc_r = new DSmoother(*PCOp.As<SparseMatrix>());
break;
default:
break; // This should be unreachable
}
}
double s = (prob != 1) ? 1.0 : -1.0;
pc_i = new ScaledOperator(pc_r,
(conv == ComplexOperator::HERMITIAN) ?
s:-s);
BDP.SetDiagonalBlock(0, pc_r);
BDP.SetDiagonalBlock(1, pc_i);
BDP.owns_blocks = 1;
GMRESSolver gmres;
gmres.SetPreconditioner(BDP);
gmres.SetOperator(*A.Ptr());
gmres.SetRelTol(1e-12);
gmres.SetMaxIter(1000);
gmres.SetPrintLevel(1);
gmres.Mult(B, U);
}
// 12. Recover the solution as a finite element grid function and compute the
// errors if the exact solution is known.
a->RecoverFEMSolution(U, b, u);
if (exact_sol)
{
double err_r = -1.0;
double err_i = -1.0;
switch (prob)
{
case 0:
err_r = u.real().ComputeL2Error(u0_r);
err_i = u.imag().ComputeL2Error(u0_i);
break;
case 1:
err_r = u.real().ComputeL2Error(u1_r);
err_i = u.imag().ComputeL2Error(u1_i);
break;
case 2:
err_r = u.real().ComputeL2Error(u2_r);
err_i = u.imag().ComputeL2Error(u2_i);
break;
default: break; // This should be unreachable
}
cout << endl;
cout << "|| Re (u_h - u) ||_{L^2} = " << err_r << endl;
cout << "|| Im (u_h - u) ||_{L^2} = " << err_i << endl;
cout << endl;
}
// 13. Save the refined mesh and the solution. This output can be viewed
// later using GLVis: "glvis -m mesh -g sol".
{
ofstream mesh_ofs("refined.mesh");
mesh_ofs.precision(8);
mesh->Print(mesh_ofs);
ofstream sol_r_ofs("sol_r.gf");
ofstream sol_i_ofs("sol_i.gf");
sol_r_ofs.precision(8);
sol_i_ofs.precision(8);
u.real().Save(sol_r_ofs);
u.imag().Save(sol_i_ofs);
}
// 14. Send the solution by socket to a GLVis server.
if (visualization)
{
char vishost[] = "localhost";
int visport = 19916;
socketstream sol_sock_r(vishost, visport);
socketstream sol_sock_i(vishost, visport);
sol_sock_r.precision(8);
sol_sock_i.precision(8);
sol_sock_r << "solution\n" << *mesh << u.real()
<< "window_title 'Solution: Real Part'" << flush;
sol_sock_i << "solution\n" << *mesh << u.imag()
<< "window_title 'Solution: Imaginary Part'" << flush;
}
if (visualization && exact_sol)
{
*u_exact -= u;
char vishost[] = "localhost";
int visport = 19916;
socketstream sol_sock_r(vishost, visport);
socketstream sol_sock_i(vishost, visport);
sol_sock_r.precision(8);
sol_sock_i.precision(8);
sol_sock_r << "solution\n" << *mesh << u_exact->real()
<< "window_title 'Error: Real Part'" << flush;
sol_sock_i << "solution\n" << *mesh << u_exact->imag()
<< "window_title 'Error: Imaginary Part'" << flush;
}
if (visualization)
{
GridFunction u_t(fespace);
u_t = u.real();
char vishost[] = "localhost";
int visport = 19916;
socketstream sol_sock(vishost, visport);
sol_sock.precision(8);
sol_sock << "solution\n" << *mesh << u_t
<< "window_title 'Harmonic Solution (t = 0.0 T)'"
<< "pause\n" << flush;
cout << "GLVis visualization paused."
<< " Press space (in the GLVis window) to resume it.\n";
int num_frames = 32;
int i = 0;
while (sol_sock)
{
double t = (double)(i % num_frames) / num_frames;
ostringstream oss;
oss << "Harmonic Solution (t = " << t << " T)";
add(cos( 2.0 * M_PI * t), u.real(),
sin(-2.0 * M_PI * t), u.imag(), u_t);
sol_sock << "solution\n" << *mesh << u_t
<< "window_title '" << oss.str() << "'" << flush;
i++;
}
}
// 15. Free the used memory.
delete a;
delete u_exact;
delete pcOp;
delete fespace;
delete fec;
delete mesh;
return 0;
}
bool check_for_inline_mesh(const char * mesh_file)
{
string file(mesh_file);
size_t p0 = file.find_last_of("/");
string s0 = file.substr((p0==string::npos)?0:(p0+1),7);
return s0 == "inline-";
}
complex<double> u0_exact(const Vector &x)
{
int dim = x.Size();
complex<double> i(0.0, 1.0);
complex<double> alpha = (epsilon_ * omega_ - i * sigma_);
complex<double> kappa = std::sqrt(mu_ * omega_* alpha);
return std::exp(-i * kappa * x[dim - 1]);
}
double u0_real_exact(const Vector &x)
{
return u0_exact(x).real();
}
double u0_imag_exact(const Vector &x)
{
return u0_exact(x).imag();
}
void u1_real_exact(const Vector &x, Vector &v)
{
int dim = x.Size();
v.SetSize(dim); v = 0.0; v[0] = u0_real_exact(x);
}
void u1_imag_exact(const Vector &x, Vector &v)
{
int dim = x.Size();
v.SetSize(dim); v = 0.0; v[0] = u0_imag_exact(x);
}
void u2_real_exact(const Vector &x, Vector &v)
{
int dim = x.Size();
v.SetSize(dim); v = 0.0; v[dim-1] = u0_real_exact(x);
}
void u2_imag_exact(const Vector &x, Vector &v)
{
int dim = x.Size();
v.SetSize(dim); v = 0.0; v[dim-1] = u0_imag_exact(x);
}