-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathex23.cpp
418 lines (358 loc) · 12 KB
/
ex23.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
// MFEM Example 23
//
// Compile with: make ex23
//
// Sample runs: ex23
// ex23 -o 4 -tf 5
// ex23 -m ../data/square-disc.mesh -o 2 -tf 2 --neumann
// ex23 -m ../data/disc-nurbs.mesh -r 3 -o 4 -tf 2
// ex23 -m ../data/inline-hex.mesh -o 1 -tf 2 --neumann
// ex23 -m ../data/inline-tet.mesh -o 1 -tf 2 --neumann
//
// Description: This example solves the wave equation problem of the form:
//
// d^2u/dt^2 = c^2 \Delta u.
//
// The example demonstrates the use of time dependent operators,
// implicit solvers and second order time integration.
//
// We recommend viewing examples 9 and 10 before viewing this
// example.
#include "mfem.hpp"
#include <fstream>
#include <iostream>
using namespace std;
using namespace mfem;
/** After spatial discretization, the conduction model can be written as:
*
* d^2u/dt^2 = M^{-1}(-Ku)
*
* where u is the vector representing the temperature, M is the mass matrix,
* and K is the diffusion operator with diffusivity depending on u:
* (\kappa + \alpha u).
*
* Class WaveOperator represents the right-hand side of the above ODE.
*/
class WaveOperator : public SecondOrderTimeDependentOperator
{
protected:
FiniteElementSpace &fespace;
Array<int> ess_tdof_list; // this list remains empty for pure Neumann b.c.
BilinearForm *M;
BilinearForm *K;
SparseMatrix Mmat, Kmat, Kmat0;
SparseMatrix *T; // T = M + dt K
double current_dt;
CGSolver M_solver; // Krylov solver for inverting the mass matrix M
DSmoother M_prec; // Preconditioner for the mass matrix M
CGSolver T_solver; // Implicit solver for T = M + fac0*K
DSmoother T_prec; // Preconditioner for the implicit solver
Coefficient *c2;
mutable Vector z; // auxiliary vector
public:
WaveOperator(FiniteElementSpace &f, Array<int> &ess_bdr,double speed);
using SecondOrderTimeDependentOperator::Mult;
virtual void Mult(const Vector &u, const Vector &du_dt,
Vector &d2udt2) const;
/** Solve the Backward-Euler equation:
d2udt2 = f(u + fac0*d2udt2,dudt + fac1*d2udt2, t),
for the unknown d2udt2. */
using SecondOrderTimeDependentOperator::ImplicitSolve;
virtual void ImplicitSolve(const double fac0, const double fac1,
const Vector &u, const Vector &dudt, Vector &d2udt2);
///
void SetParameters(const Vector &u);
virtual ~WaveOperator();
};
WaveOperator::WaveOperator(FiniteElementSpace &f,
Array<int> &ess_bdr, double speed)
: SecondOrderTimeDependentOperator(f.GetTrueVSize(), 0.0), fespace(f), M(NULL),
K(NULL),
T(NULL), current_dt(0.0), z(height)
{
const double rel_tol = 1e-8;
fespace.GetEssentialTrueDofs(ess_bdr, ess_tdof_list);
c2 = new ConstantCoefficient(speed*speed);
K = new BilinearForm(&fespace);
K->AddDomainIntegrator(new DiffusionIntegrator(*c2));
K->Assemble();
Array<int> dummy;
K->FormSystemMatrix(dummy, Kmat0);
K->FormSystemMatrix(ess_tdof_list, Kmat);
M = new BilinearForm(&fespace);
M->AddDomainIntegrator(new MassIntegrator());
M->Assemble();
M->FormSystemMatrix(ess_tdof_list, Mmat);
M_solver.iterative_mode = false;
M_solver.SetRelTol(rel_tol);
M_solver.SetAbsTol(0.0);
M_solver.SetMaxIter(30);
M_solver.SetPrintLevel(0);
M_solver.SetPreconditioner(M_prec);
M_solver.SetOperator(Mmat);
T_solver.iterative_mode = false;
T_solver.SetRelTol(rel_tol);
T_solver.SetAbsTol(0.0);
T_solver.SetMaxIter(100);
T_solver.SetPrintLevel(0);
T_solver.SetPreconditioner(T_prec);
T = NULL;
}
void WaveOperator::Mult(const Vector &u, const Vector &du_dt,
Vector &d2udt2) const
{
// Compute:
// d2udt2 = M^{-1}*-K(u)
// for d2udt2
Kmat.Mult(u, z);
z.Neg(); // z = -z
M_solver.Mult(z, d2udt2);
}
void WaveOperator::ImplicitSolve(const double fac0, const double fac1,
const Vector &u, const Vector &dudt, Vector &d2udt2)
{
// Solve the equation:
// d2udt2 = M^{-1}*[-K(u + fac0*d2udt2)]
// for d2udt2
if (!T)
{
T = Add(1.0, Mmat, fac0, Kmat);
T_solver.SetOperator(*T);
}
Kmat0.Mult(u, z);
z.Neg();
for (int i = 0; i < ess_tdof_list.Size(); i++)
{
z[ess_tdof_list[i]] = 0.0;
}
T_solver.Mult(z, d2udt2);
}
void WaveOperator::SetParameters(const Vector &u)
{
delete T;
T = NULL; // re-compute T on the next ImplicitSolve
}
WaveOperator::~WaveOperator()
{
delete T;
delete M;
delete K;
delete c2;
}
double InitialSolution(const Vector &x)
{
return exp(-x.Norml2()*x.Norml2()*30);
}
double InitialRate(const Vector &x)
{
return 0.0;
}
int main(int argc, char *argv[])
{
// 1. Parse command-line options.
const char *mesh_file = "../data/star.mesh";
const char *ref_dir = "";
int ref_levels = 2;
int order = 2;
int ode_solver_type = 10;
double t_final = 0.5;
double dt = 1.0e-2;
double speed = 1.0;
bool visualization = true;
bool visit = true;
bool dirichlet = true;
int vis_steps = 5;
int precision = 8;
cout.precision(precision);
OptionsParser args(argc, argv);
args.AddOption(&mesh_file, "-m", "--mesh",
"Mesh file to use.");
args.AddOption(&ref_levels, "-r", "--refine",
"Number of times to refine the mesh uniformly.");
args.AddOption(&order, "-o", "--order",
"Order (degree) of the finite elements.");
args.AddOption(&ode_solver_type, "-s", "--ode-solver",
"ODE solver: [0--10] - GeneralizedAlpha(0.1 * s),\n\t"
"\t 11 - Average Acceleration, 12 - Linear Acceleration\n"
"\t 13 - CentralDifference, 14 - FoxGoodwin");
args.AddOption(&t_final, "-tf", "--t-final",
"Final time; start time is 0.");
args.AddOption(&dt, "-dt", "--time-step",
"Time step.");
args.AddOption(&speed, "-c", "--speed",
"Wave speed.");
args.AddOption(&dirichlet, "-dir", "--dirichlet", "-neu",
"--neumann",
"BC switch.");
args.AddOption(&ref_dir, "-r", "--ref",
"Reference directory for checking final solution.");
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.AddOption(&visit, "-visit", "--visit-datafiles", "-no-visit",
"--no-visit-datafiles",
"Save data files for VisIt (visit.llnl.gov) visualization.");
args.AddOption(&vis_steps, "-vs", "--visualization-steps",
"Visualize every n-th timestep.");
args.Parse();
if (!args.Good())
{
args.PrintUsage(cout);
return 1;
}
args.PrintOptions(cout);
// 2. Read the mesh from the given mesh file. We can handle triangular,
// quadrilateral, tetrahedral and hexahedral meshes with the same code.
Mesh *mesh = new Mesh(mesh_file, 1, 1);
int dim = mesh->Dimension();
// 3. Define the ODE solver used for time integration. Several second order
// time integrators are available.
SecondOrderODESolver *ode_solver;
switch (ode_solver_type)
{
// Implicit methods
case 0: ode_solver = new GeneralizedAlpha2Solver(0.0); break;
case 1: ode_solver = new GeneralizedAlpha2Solver(0.1); break;
case 2: ode_solver = new GeneralizedAlpha2Solver(0.2); break;
case 3: ode_solver = new GeneralizedAlpha2Solver(0.3); break;
case 4: ode_solver = new GeneralizedAlpha2Solver(0.4); break;
case 5: ode_solver = new GeneralizedAlpha2Solver(0.5); break;
case 6: ode_solver = new GeneralizedAlpha2Solver(0.6); break;
case 7: ode_solver = new GeneralizedAlpha2Solver(0.7); break;
case 8: ode_solver = new GeneralizedAlpha2Solver(0.8); break;
case 9: ode_solver = new GeneralizedAlpha2Solver(0.9); break;
case 10: ode_solver = new GeneralizedAlpha2Solver(1.0); break;
case 11: ode_solver = new AverageAccelerationSolver(); break;
case 12: ode_solver = new LinearAccelerationSolver(); break;
case 13: ode_solver = new CentralDifferenceSolver(); break;
case 14: ode_solver = new FoxGoodwinSolver(); break;
default:
cout << "Unknown ODE solver type: " << ode_solver_type << '\n';
delete mesh;
return 3;
}
// 4. Refine the mesh to increase the resolution. In this example we do
// 'ref_levels' of uniform refinement, where 'ref_levels' is a
// command-line parameter.
for (int lev = 0; lev < ref_levels; lev++)
{
mesh->UniformRefinement();
}
// 5. Define the vector finite element space representing the current and the
// initial temperature, u_ref.
H1_FECollection fe_coll(order, dim);
FiniteElementSpace fespace(mesh, &fe_coll);
int fe_size = fespace.GetTrueVSize();
cout << "Number of temperature unknowns: " << fe_size << endl;
GridFunction u_gf(&fespace);
GridFunction dudt_gf(&fespace);
// 6. Set the initial conditions for u. All boundaries are considered
// natural.
FunctionCoefficient u_0(InitialSolution);
u_gf.ProjectCoefficient(u_0);
Vector u;
u_gf.GetTrueDofs(u);
FunctionCoefficient dudt_0(InitialRate);
dudt_gf.ProjectCoefficient(dudt_0);
Vector dudt;
dudt_gf.GetTrueDofs(dudt);
// 7. Initialize the conduction operator and the visualization.
Array<int> ess_bdr;
if (mesh->bdr_attributes.Size())
{
ess_bdr.SetSize(mesh->bdr_attributes.Max());
if (dirichlet)
{
ess_bdr = 1;
}
else
{
ess_bdr = 0;
}
}
WaveOperator oper(fespace, ess_bdr, speed);
u_gf.SetFromTrueDofs(u);
{
ofstream omesh("ex23.mesh");
omesh.precision(precision);
mesh->Print(omesh);
ofstream osol("ex23-init.gf");
osol.precision(precision);
u_gf.Save(osol);
dudt_gf.Save(osol);
}
VisItDataCollection visit_dc("Example23", mesh);
visit_dc.RegisterField("solution", &u_gf);
visit_dc.RegisterField("rate", &dudt_gf);
if (visit)
{
visit_dc.SetCycle(0);
visit_dc.SetTime(0.0);
visit_dc.Save();
}
socketstream sout;
if (visualization)
{
char vishost[] = "localhost";
int visport = 19916;
sout.open(vishost, visport);
if (!sout)
{
cout << "Unable to connect to GLVis server at "
<< vishost << ':' << visport << endl;
visualization = false;
cout << "GLVis visualization disabled.\n";
}
else
{
sout.precision(precision);
sout << "solution\n" << *mesh << dudt_gf;
sout << "pause\n";
sout << flush;
cout << "GLVis visualization paused."
<< " Press space (in the GLVis window) to resume it.\n";
}
}
// 8. Perform time-integration (looping over the time iterations, ti, with a
// time-step dt).
ode_solver->Init(oper);
double t = 0.0;
bool last_step = false;
for (int ti = 1; !last_step; ti++)
{
if (t + dt >= t_final - dt/2)
{
last_step = true;
}
ode_solver->Step(u, dudt, t, dt);
if (last_step || (ti % vis_steps) == 0)
{
cout << "step " << ti << ", t = " << t << endl;
u_gf.SetFromTrueDofs(u);
dudt_gf.SetFromTrueDofs(dudt);
if (visualization)
{
sout << "solution\n" << *mesh << u_gf << flush;
}
if (visit)
{
visit_dc.SetCycle(ti);
visit_dc.SetTime(t);
visit_dc.Save();
}
}
oper.SetParameters(u);
}
// 9. Save the final solution. This output can be viewed later using GLVis:
// "glvis -m ex23.mesh -g ex23-final.gf".
{
ofstream osol("ex23-final.gf");
osol.precision(precision);
u_gf.Save(osol);
dudt_gf.Save(osol);
}
// 10. Free the used memory.
delete ode_solver;
delete mesh;
return 0;
}