-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathex26.cpp
255 lines (220 loc) · 9.07 KB
/
ex26.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
// MFEM Example 26
//
// Compile with: make ex26
//
// Sample runs: ex26 -m ../data/star.mesh
// ex26 -m ../data/fichera.mesh
// ex26 -m ../data/beam-hex.mesh
//
// Device sample runs:
// ex26 -d cuda
// ex26 -d raja-cuda
// ex26 -d occa-cuda
// ex26 -d raja-omp
// ex26 -d occa-omp
// ex26 -d ceed-cpu
// ex26 -d ceed-cuda
// ex26 -m ../data/beam-hex.mesh -d cuda
//
// Description: This example code demonstrates the use of MFEM to define a
// simple finite element discretization of the Laplace problem
// -Delta u = 1 with homogeneous Dirichlet boundary conditions
// as in Example 1.
//
// It highlights on the creation of a hierarchy of discretization
// spaces with partial assembly and the construction of an
// efficient multigrid preconditioner for the iterative solver.
//
// We recommend viewing Example 1 before viewing this example.
#include "mfem.hpp"
#include <fstream>
#include <iostream>
using namespace std;
using namespace mfem;
// Class for constructing a multigrid preconditioner for the diffusion operator.
// This example multigrid preconditioner class demonstrates the creation of the
// diffusion bilinear forms and operators using partial assembly for all spaces
// in the FiniteElementSpaceHierarchy. The preconditioner uses a CG solver on
// the coarsest level and second order Chebyshev accelerated smoothers on the
// other levels.
class DiffusionMultigrid : public GeometricMultigrid
{
private:
ConstantCoefficient one;
public:
// Constructs a diffusion multigrid for the given FiniteElementSpaceHierarchy
// and the array of essential boundaries
DiffusionMultigrid(FiniteElementSpaceHierarchy& fespaces, Array<int>& ess_bdr)
: GeometricMultigrid(fespaces), one(1.0)
{
ConstructCoarseOperatorAndSolver(fespaces.GetFESpaceAtLevel(0), ess_bdr);
for (int level = 1; level < fespaces.GetNumLevels(); ++level)
{
ConstructOperatorAndSmoother(fespaces.GetFESpaceAtLevel(level), ess_bdr);
}
}
private:
void ConstructBilinearForm(FiniteElementSpace& fespace, Array<int>& ess_bdr)
{
BilinearForm* form = new BilinearForm(&fespace);
form->SetAssemblyLevel(AssemblyLevel::PARTIAL);
form->AddDomainIntegrator(new DiffusionIntegrator(one));
form->Assemble();
bfs.Append(form);
essentialTrueDofs.Append(new Array<int>());
fespace.GetEssentialTrueDofs(ess_bdr, *essentialTrueDofs.Last());
}
void ConstructCoarseOperatorAndSolver(FiniteElementSpace& coarse_fespace,
Array<int>& ess_bdr)
{
ConstructBilinearForm(coarse_fespace, ess_bdr);
OperatorPtr opr;
opr.SetType(Operator::ANY_TYPE);
bfs.Last()->FormSystemMatrix(*essentialTrueDofs.Last(), opr);
opr.SetOperatorOwner(false);
CGSolver* pcg = new CGSolver();
pcg->SetPrintLevel(-1);
pcg->SetMaxIter(200);
pcg->SetRelTol(sqrt(1e-4));
pcg->SetAbsTol(0.0);
pcg->SetOperator(*opr.Ptr());
AddLevel(opr.Ptr(), pcg, true, true);
}
void ConstructOperatorAndSmoother(FiniteElementSpace& fespace,
Array<int>& ess_bdr)
{
ConstructBilinearForm(fespace, ess_bdr);
OperatorPtr opr;
opr.SetType(Operator::ANY_TYPE);
bfs.Last()->FormSystemMatrix(*essentialTrueDofs.Last(), opr);
opr.SetOperatorOwner(false);
Vector diag(fespace.GetTrueVSize());
bfs.Last()->AssembleDiagonal(diag);
Solver* smoother = new OperatorChebyshevSmoother(*opr, diag,
*essentialTrueDofs.Last(), 2);
AddLevel(opr.Ptr(), smoother, true, true);
}
};
int main(int argc, char *argv[])
{
// 1. Parse command-line options.
const char *mesh_file = "../data/star.mesh";
int geometric_refinements = 0;
int order_refinements = 2;
const char *device_config = "cpu";
bool visualization = true;
OptionsParser args(argc, argv);
args.AddOption(&mesh_file, "-m", "--mesh",
"Mesh file to use.");
args.AddOption(&geometric_refinements, "-gr", "--geometric-refinements",
"Number of geometric refinements done prior to order refinements.");
args.AddOption(&order_refinements, "-or", "--order-refinements",
"Number of order refinements. Finest level in the hierarchy has order 2^{or}.");
args.AddOption(&device_config, "-d", "--device",
"Device configuration string, see Device::Configure().");
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.Parse();
if (!args.Good())
{
args.PrintUsage(cout);
return 1;
}
args.PrintOptions(cout);
// 2. Enable hardware devices such as GPUs, and programming models such as
// CUDA, OCCA, RAJA and OpenMP based on command line options.
Device device(device_config);
device.Print();
// 3. Read the mesh from the given mesh file. We can handle triangular,
// quadrilateral, tetrahedral, hexahedral, surface and volume meshes with
// the same code.
Mesh *mesh = new Mesh(mesh_file, 1, 1);
int dim = mesh->Dimension();
// 4. Refine the mesh to increase the resolution. In this example we do
// 'ref_levels' of uniform refinement. We choose 'ref_levels' to be the
// largest number that gives a final mesh with no more than 50,000
// elements.
{
int ref_levels =
(int)floor(log(5000./mesh->GetNE())/log(2.)/dim);
for (int l = 0; l < ref_levels; l++)
{
mesh->UniformRefinement();
}
}
// 5. Define a finite element space hierarchy on the mesh. Here we use
// continuous Lagrange finite elements. We start with order 1 on the
// coarse level and geometrically refine the spaces by the specified
// amount. Afterwards, we increase the order of the finite elements
// by a factor of 2 for each additional level.
FiniteElementCollection *fec = new H1_FECollection(1, dim);
FiniteElementSpace *coarse_fespace = new FiniteElementSpace(mesh, fec);
FiniteElementSpaceHierarchy fespaces(mesh, coarse_fespace, true, true);
Array<FiniteElementCollection*> collections;
collections.Append(fec);
for (int level = 0; level < geometric_refinements; ++level)
{
fespaces.AddUniformlyRefinedLevel();
}
for (int level = 0; level < order_refinements; ++level)
{
collections.Append(new H1_FECollection((int)std::pow(2, level+1), dim));
fespaces.AddOrderRefinedLevel(collections.Last());
}
cout << "Number of finite element unknowns: "
<< fespaces.GetFinestFESpace().GetTrueVSize() << endl;
// 6. Set up the linear form b(.) which corresponds to the right-hand side of
// the FEM linear system, which in this case is (1,phi_i) where phi_i are
// the basis functions in the finite element fespace.
LinearForm *b = new LinearForm(&fespaces.GetFinestFESpace());
ConstantCoefficient one(1.0);
b->AddDomainIntegrator(new DomainLFIntegrator(one));
b->Assemble();
// 7. Define the solution vector x as a finite element grid function
// corresponding to fespace. Initialize x with initial guess of zero,
// which satisfies the boundary conditions.
GridFunction x(&fespaces.GetFinestFESpace());
x = 0.0;
// 8. Create the multigrid operator using the previously created
// FiniteElementSpaceHierarchy and additional boundary information. This
// operator is then used to create the MultigridSolver as a preconditioner
// in the iterative solver.
Array<int> ess_bdr(mesh->bdr_attributes.Max());
ess_bdr = 1;
DiffusionMultigrid M(fespaces, ess_bdr);
M.SetCycleType(Multigrid::CycleType::VCYCLE, 1, 1);
OperatorPtr A;
Vector B, X;
M.FormFineLinearSystem(x, *b, A, X, B);
cout << "Size of linear system: " << A->Height() << endl;
// 9. Solve the linear system A X = B.
PCG(*A, M, B, X, 1, 2000, 1e-12, 0.0);
// 10. Recover the solution as a finite element grid function.
M.RecoverFineFEMSolution(X, *b, x);
// 11. Save the refined mesh and the solution. This output can be viewed
// later using GLVis: "glvis -m refined.mesh -g sol.gf".
ofstream mesh_ofs("refined.mesh");
mesh_ofs.precision(8);
fespaces.GetFinestFESpace().GetMesh()->Print(mesh_ofs);
ofstream sol_ofs("sol.gf");
sol_ofs.precision(8);
x.Save(sol_ofs);
// 12. Send the solution by socket to a GLVis server.
if (visualization)
{
char vishost[] = "localhost";
int visport = 19916;
socketstream sol_sock(vishost, visport);
sol_sock.precision(8);
sol_sock << "solution\n" << *fespaces.GetFinestFESpace().GetMesh() << x <<
flush;
}
// 13. Free the used memory.
delete b;
for (int level = 0; level < collections.Size(); ++level)
{
delete collections[level];
}
return 0;
}