-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathex31p.cpp
531 lines (458 loc) · 19.4 KB
/
ex31p.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
// MFEM Example 31 - Parallel Version
//
// Compile with: make ex31p
//
// Sample runs: mpirun -np 4 ex31p -m ../data/hexagon.mesh -o 2
// mpirun -np 4 ex31p -m ../data/star.mesh
// mpirun -np 4 ex31p -m ../data/square-disc.mesh -o 2
// mpirun -np 4 ex31p -m ../data/fichera.mesh -o 3 -rs 1 -rp 0
// mpirun -np 4 ex31p -m ../data/square-disc-nurbs.mesh -o 3
// mpirun -np 4 ex31p -m ../data/amr-quad.mesh -o 2 -rs 1
// mpirun -np 4 ex31p -m ../data/amr-hex.mesh -rs 1
//
// Description: This example code solves a simple electromagnetic diffusion
// problem corresponding to the second order definite Maxwell
// equation curl curl E + sigma E = f with boundary condition
// E x n = <given tangential field>. In this example sigma is an
// anisotropic 3x3 tensor. Here, we use a given exact solution E
// and compute the corresponding r.h.s. f. We discretize with
// Nedelec finite elements in 1D, 2D, or 3D.
//
// The example demonstrates the use of restricted H(curl) finite
// element spaces with the curl-curl and the (vector finite
// element) mass bilinear form, as well as the computation of
// discretization error when the exact solution is known. These
// restricted spaces allow the solution of 1D or 2D
// electromagnetic problems which involve 3D field vectors. Such
// problems arise in plasma physics and crystallography.
//
// We recommend viewing example 3 before viewing this example.
#include "mfem.hpp"
#include <fstream>
#include <iostream>
using namespace std;
using namespace mfem;
// Exact solution, E, and r.h.s., f. See below for implementation.
void E_exact(const Vector &, Vector &);
void CurlE_exact(const Vector &, Vector &);
void f_exact(const Vector &, Vector &);
double freq = 1.0, kappa;
int dim;
int main(int argc, char *argv[])
{
// 1. Initialize MPI.
Mpi::Init(argc, argv);
int num_procs = Mpi::WorldSize();
int myid = Mpi::WorldRank();
Hypre::Init();
// 2. Parse command-line options.
const char *mesh_file = "../data/inline-quad.mesh";
int ser_ref_levels = 2;
int par_ref_levels = 1;
int order = 1;
bool use_ams = true;
bool visualization = 1;
OptionsParser args(argc, argv);
args.AddOption(&mesh_file, "-m", "--mesh",
"Mesh file to use.");
args.AddOption(&ser_ref_levels, "-rs", "--refine-serial",
"Number of times to refine the mesh uniformly in serial.");
args.AddOption(&par_ref_levels, "-rp", "--refine-parallel",
"Number of times to refine the mesh uniformly in parallel.");
args.AddOption(&order, "-o", "--order",
"Finite element order (polynomial degree).");
args.AddOption(&freq, "-f", "--frequency", "Set the frequency for the exact"
" solution.");
args.AddOption(&use_ams, "-ams", "--hypre-ams", "-slu",
"--superlu", "Use AMS or SuperLU solver.");
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.ParseCheck();
kappa = freq * M_PI;
// 3. Read the (serial) mesh from the given mesh file on all processors. We
// can handle triangular, quadrilateral, tetrahedral, hexahedral, surface
// and volume meshes with the same code.
Mesh *mesh = new Mesh(mesh_file, 1, 1);
dim = mesh->Dimension();
// 4. Refine the serial mesh on all processors to increase the resolution. In
// this example we do 'ref_levels' of uniform refinement (2 by default, or
// specified on the command line with -rs).
for (int lev = 0; lev < ser_ref_levels; lev++)
{
mesh->UniformRefinement();
}
// 5. Define a parallel mesh by a partitioning of the serial mesh. Refine
// this mesh further in parallel to increase the resolution (1 time by
// default, or specified on the command line with -rp). Once the parallel
// mesh is defined, the serial mesh can be deleted.
ParMesh pmesh(MPI_COMM_WORLD, *mesh);
delete mesh;
for (int lev = 0; lev < par_ref_levels; lev++)
{
pmesh.UniformRefinement();
}
// 6. Define a parallel finite element space on the parallel mesh. Here we
// use the Nedelec finite elements of the specified order.
FiniteElementCollection *fec = NULL;
if (dim == 1)
{
fec = new ND_R1D_FECollection(order, dim);
}
else if (dim == 2)
{
fec = new ND_R2D_FECollection(order, dim);
}
else
{
fec = new ND_FECollection(order, dim);
}
ParFiniteElementSpace fespace(&pmesh, fec);
HYPRE_Int size = fespace.GlobalTrueVSize();
if (Mpi::Root()) { cout << "Number of H(Curl) unknowns: " << size << endl; }
// 7. Determine the list of true (i.e. parallel conforming) essential
// boundary dofs. In this example, the boundary conditions are defined
// by marking all the boundary attributes from the mesh as essential
// (Dirichlet) and converting them to a list of true dofs.
Array<int> ess_tdof_list;
if (pmesh.bdr_attributes.Size())
{
Array<int> ess_bdr(pmesh.bdr_attributes.Max());
ess_bdr = 1;
fespace.GetEssentialTrueDofs(ess_bdr, ess_tdof_list);
}
// 8. Set up the parallel linear form b(.) which corresponds to the
// right-hand side of the FEM linear system, which in this case is
// (f,phi_i) where f is given by the function f_exact and phi_i are the
// basis functions in the finite element fespace.
VectorFunctionCoefficient f(3, f_exact);
ParLinearForm b(&fespace);
b.AddDomainIntegrator(new VectorFEDomainLFIntegrator(f));
b.Assemble();
// 9. Define the solution vector x as a parallel finite element grid function
// corresponding to fespace. Initialize x by projecting the exact
// solution. Note that only values from the boundary edges will be used
// when eliminating the non-homogeneous boundary condition to modify the
// r.h.s. vector b.
ParGridFunction sol(&fespace);
VectorFunctionCoefficient E(3, E_exact);
VectorFunctionCoefficient CurlE(3, CurlE_exact);
sol.ProjectCoefficient(E);
// 10. Set up the parallel bilinear form corresponding to the EM diffusion
// operator curl muinv curl + sigma I, by adding the curl-curl and the
// mass domain integrators.
DenseMatrix sigmaMat(3);
sigmaMat(0,0) = 2.0; sigmaMat(1,1) = 2.0; sigmaMat(2,2) = 2.0;
sigmaMat(0,2) = 0.0; sigmaMat(2,0) = 0.0;
sigmaMat(0,1) = M_SQRT1_2; sigmaMat(1,0) = M_SQRT1_2; // 1/sqrt(2) in cmath
sigmaMat(1,2) = M_SQRT1_2; sigmaMat(2,1) = M_SQRT1_2;
ConstantCoefficient muinv(1.0);
MatrixConstantCoefficient sigma(sigmaMat);
ParBilinearForm a(&fespace);
a.AddDomainIntegrator(new CurlCurlIntegrator(muinv));
a.AddDomainIntegrator(new VectorFEMassIntegrator(sigma));
// 11. Assemble the parallel bilinear form and the corresponding linear
// system, applying any necessary transformations such as: parallel
// assembly, eliminating boundary conditions, applying conforming
// constraints for non-conforming AMR, etc.
a.Assemble();
OperatorPtr A;
Vector B, X;
a.FormLinearSystem(ess_tdof_list, sol, b, A, X, B);
// 12. Solve the system AX=B using PCG with the AMS preconditioner from hypre
if (use_ams)
{
if (Mpi::Root())
{
cout << "Size of linear system: "
<< A.As<HypreParMatrix>()->GetGlobalNumRows() << endl;
}
HypreAMS ams(*A.As<HypreParMatrix>(), &fespace);
HyprePCG pcg(*A.As<HypreParMatrix>());
pcg.SetTol(1e-12);
pcg.SetMaxIter(1000);
pcg.SetPrintLevel(2);
pcg.SetPreconditioner(ams);
pcg.Mult(B, X);
}
else
#ifdef MFEM_USE_SUPERLU
{
if (Mpi::Root())
{
cout << "Size of linear system: "
<< A.As<HypreParMatrix>()->GetGlobalNumRows() << endl;
}
SuperLURowLocMatrix A_SuperLU(*A.As<HypreParMatrix>());
SuperLUSolver AInv(MPI_COMM_WORLD);
AInv.SetOperator(A_SuperLU);
AInv.Mult(B,X);
}
#else
{
if (Mpi::Root()) { cout << "No solvers available." << endl; }
return 1;
}
#endif
// 13. Recover the parallel grid function corresponding to X. This is the
// local finite element solution on each processor.
a.RecoverFEMSolution(X, b, sol);
// 14. Compute and print the H(Curl) norm of the error.
{
double error = sol.ComputeHCurlError(&E, &CurlE);
if (Mpi::Root())
{
cout << "\n|| E_h - E ||_{H(Curl)} = " << error << '\n' << endl;
}
}
// 15. Save the refined mesh and the solution in parallel. This output can
// be viewed later using GLVis: "glvis -np <np> -m mesh -g sol".
{
ostringstream mesh_name, sol_name;
mesh_name << "mesh." << setfill('0') << setw(6) << myid;
sol_name << "sol." << setfill('0') << setw(6) << myid;
ofstream mesh_ofs(mesh_name.str().c_str());
mesh_ofs.precision(8);
pmesh.Print(mesh_ofs);
ofstream sol_ofs(sol_name.str().c_str());
sol_ofs.precision(8);
sol.Save(sol_ofs);
}
// 16. Send the solution by socket to a GLVis server.
if (visualization)
{
char vishost[] = "localhost";
int visport = 19916;
VectorGridFunctionCoefficient solCoef(&sol);
CurlGridFunctionCoefficient dsolCoef(&sol);
if (dim ==1)
{
socketstream x_sock(vishost, visport);
socketstream y_sock(vishost, visport);
socketstream z_sock(vishost, visport);
socketstream dy_sock(vishost, visport);
socketstream dz_sock(vishost, visport);
x_sock.precision(8);
y_sock.precision(8);
z_sock.precision(8);
dy_sock.precision(8);
dz_sock.precision(8);
Vector xVec(3); xVec = 0.0; xVec(0) = 1;
Vector yVec(3); yVec = 0.0; yVec(1) = 1;
Vector zVec(3); zVec = 0.0; zVec(2) = 1;
VectorConstantCoefficient xVecCoef(xVec);
VectorConstantCoefficient yVecCoef(yVec);
VectorConstantCoefficient zVecCoef(zVec);
H1_FECollection fec_h1(order, dim);
L2_FECollection fec_l2(order-1, dim);
ParFiniteElementSpace fes_h1(&pmesh, &fec_h1);
ParFiniteElementSpace fes_l2(&pmesh, &fec_l2);
ParGridFunction xComp(&fes_l2);
ParGridFunction yComp(&fes_h1);
ParGridFunction zComp(&fes_h1);
ParGridFunction dyComp(&fes_l2);
ParGridFunction dzComp(&fes_l2);
InnerProductCoefficient xCoef(xVecCoef, solCoef);
InnerProductCoefficient yCoef(yVecCoef, solCoef);
InnerProductCoefficient zCoef(zVecCoef, solCoef);
xComp.ProjectCoefficient(xCoef);
yComp.ProjectCoefficient(yCoef);
zComp.ProjectCoefficient(zCoef);
x_sock << "parallel " << num_procs << " " << myid << "\n"
<< "solution\n" << pmesh << xComp << flush
<< "window_title 'X component'" << endl;
y_sock << "parallel " << num_procs << " " << myid << "\n"
<< "solution\n" << pmesh << yComp << flush
<< "window_geometry 403 0 400 350 "
<< "window_title 'Y component'" << endl;
z_sock << "parallel " << num_procs << " " << myid << "\n"
<< "solution\n" << pmesh << zComp << flush
<< "window_geometry 806 0 400 350 "
<< "window_title 'Z component'" << endl;
InnerProductCoefficient dyCoef(yVecCoef, dsolCoef);
InnerProductCoefficient dzCoef(zVecCoef, dsolCoef);
dyComp.ProjectCoefficient(dyCoef);
dzComp.ProjectCoefficient(dzCoef);
dy_sock << "parallel " << num_procs << " " << myid << "\n"
<< "solution\n" << pmesh << dyComp << flush
<< "window_geometry 403 375 400 350 "
<< "window_title 'Y component of Curl'" << endl;
dz_sock << "parallel " << num_procs << " " << myid << "\n"
<< "solution\n" << pmesh << dzComp << flush
<< "window_geometry 806 375 400 350 "
<< "window_title 'Z component of Curl'" << endl;
}
else if (dim == 2)
{
socketstream xy_sock(vishost, visport);
socketstream z_sock(vishost, visport);
socketstream dxy_sock(vishost, visport);
socketstream dz_sock(vishost, visport);
DenseMatrix xyMat(2,3); xyMat = 0.0;
xyMat(0,0) = 1.0; xyMat(1,1) = 1.0;
MatrixConstantCoefficient xyMatCoef(xyMat);
Vector zVec(3); zVec = 0.0; zVec(2) = 1;
VectorConstantCoefficient zVecCoef(zVec);
MatrixVectorProductCoefficient xyCoef(xyMatCoef, solCoef);
InnerProductCoefficient zCoef(zVecCoef, solCoef);
H1_FECollection fec_h1(order, dim);
ND_FECollection fec_nd(order, dim);
RT_FECollection fec_rt(order-1, dim);
L2_FECollection fec_l2(order-1, dim);
ParFiniteElementSpace fes_h1(&pmesh, &fec_h1);
ParFiniteElementSpace fes_nd(&pmesh, &fec_nd);
ParFiniteElementSpace fes_rt(&pmesh, &fec_rt);
ParFiniteElementSpace fes_l2(&pmesh, &fec_l2);
ParGridFunction xyComp(&fes_nd);
ParGridFunction zComp(&fes_h1);
ParGridFunction dxyComp(&fes_rt);
ParGridFunction dzComp(&fes_l2);
xyComp.ProjectCoefficient(xyCoef);
zComp.ProjectCoefficient(zCoef);
xy_sock << "parallel " << num_procs << " " << myid << "\n";
xy_sock.precision(8);
xy_sock << "solution\n" << pmesh << xyComp
<< "window_title 'XY components'\n" << flush;
z_sock << "parallel " << num_procs << " " << myid << "\n"
<< "solution\n" << pmesh << zComp << flush
<< "window_geometry 403 0 400 350 "
<< "window_title 'Z component'" << endl;
MatrixVectorProductCoefficient dxyCoef(xyMatCoef, dsolCoef);
InnerProductCoefficient dzCoef(zVecCoef, dsolCoef);
dxyComp.ProjectCoefficient(dxyCoef);
dzComp.ProjectCoefficient(dzCoef);
dxy_sock << "parallel " << num_procs << " " << myid << "\n"
<< "solution\n" << pmesh << dxyComp << flush
<< "window_geometry 0 375 400 350 "
<< "window_title 'XY components of Curl'" << endl;
dz_sock << "parallel " << num_procs << " " << myid << "\n"
<< "solution\n" << pmesh << dzComp << flush
<< "window_geometry 403 375 400 350 "
<< "window_title 'Z component of Curl'" << endl;
}
else
{
socketstream sol_sock(vishost, visport);
socketstream dsol_sock(vishost, visport);
RT_FECollection fec_rt(order-1, dim);
ParFiniteElementSpace fes_rt(&pmesh, &fec_rt);
ParGridFunction dsol(&fes_rt);
dsol.ProjectCoefficient(dsolCoef);
sol_sock << "parallel " << num_procs << " " << myid << "\n";
sol_sock.precision(8);
sol_sock << "solution\n" << pmesh << sol
<< "window_title 'Solution'" << flush << endl;
dsol_sock << "parallel " << num_procs << " " << myid << "\n"
<< "solution\n" << pmesh << dsol << flush
<< "window_geometry 0 375 400 350 "
<< "window_title 'Curl of solution'" << endl;
}
}
// 17. Free the used memory.
delete fec;
return 0;
}
void E_exact(const Vector &x, Vector &E)
{
if (dim == 1)
{
E(0) = 1.1 * sin(kappa * x(0) + 0.0 * M_PI);
E(1) = 1.2 * sin(kappa * x(0) + 0.4 * M_PI);
E(2) = 1.3 * sin(kappa * x(0) + 0.9 * M_PI);
}
else if (dim == 2)
{
E(0) = 1.1 * sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.0 * M_PI);
E(1) = 1.2 * sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.4 * M_PI);
E(2) = 1.3 * sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.9 * M_PI);
}
else
{
E(0) = 1.1 * sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.0 * M_PI);
E(1) = 1.2 * sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.4 * M_PI);
E(2) = 1.3 * sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.9 * M_PI);
E *= cos(kappa * x(2));
}
}
void CurlE_exact(const Vector &x, Vector &dE)
{
if (dim == 1)
{
double c4 = cos(kappa * x(0) + 0.4 * M_PI);
double c9 = cos(kappa * x(0) + 0.9 * M_PI);
dE(0) = 0.0;
dE(1) = -1.3 * c9;
dE(2) = 1.2 * c4;
dE *= kappa;
}
else if (dim == 2)
{
double c0 = cos(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.0 * M_PI);
double c4 = cos(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.4 * M_PI);
double c9 = cos(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.9 * M_PI);
dE(0) = 1.3 * c9;
dE(1) = -1.3 * c9;
dE(2) = 1.2 * c4 - 1.1 * c0;
dE *= kappa * M_SQRT1_2;
}
else
{
double s0 = sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.0 * M_PI);
double c0 = cos(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.0 * M_PI);
double s4 = sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.4 * M_PI);
double c4 = cos(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.4 * M_PI);
double c9 = cos(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.9 * M_PI);
double sk = sin(kappa * x(2));
double ck = cos(kappa * x(2));
dE(0) = 1.2 * s4 * sk + 1.3 * M_SQRT1_2 * c9 * ck;
dE(1) = -1.1 * s0 * sk - 1.3 * M_SQRT1_2 * c9 * ck;
dE(2) = -M_SQRT1_2 * (1.1 * c0 - 1.2 * c4) * ck;
dE *= kappa;
}
}
void f_exact(const Vector &x, Vector &f)
{
if (dim == 1)
{
double s0 = sin(kappa * x(0) + 0.0 * M_PI);
double s4 = sin(kappa * x(0) + 0.4 * M_PI);
double s9 = sin(kappa * x(0) + 0.9 * M_PI);
f(0) = 2.2 * s0 + 1.2 * M_SQRT1_2 * s4;
f(1) = 1.2 * (2.0 + kappa * kappa) * s4 +
M_SQRT1_2 * (1.1 * s0 + 1.3 * s9);
f(2) = 1.3 * (2.0 + kappa * kappa) * s9 + 1.2 * M_SQRT1_2 * s4;
}
else if (dim == 2)
{
double s0 = sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.0 * M_PI);
double s4 = sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.4 * M_PI);
double s9 = sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.9 * M_PI);
f(0) = 0.55 * (4.0 + kappa * kappa) * s0 +
0.6 * (M_SQRT2 - kappa * kappa) * s4;
f(1) = 0.55 * (M_SQRT2 - kappa * kappa) * s0 +
0.6 * (4.0 + kappa * kappa) * s4 +
0.65 * M_SQRT2 * s9;
f(2) = 0.6 * M_SQRT2 * s4 + 1.3 * (2.0 + kappa * kappa) * s9;
}
else
{
double s0 = sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.0 * M_PI);
double c0 = cos(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.0 * M_PI);
double s4 = sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.4 * M_PI);
double c4 = cos(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.4 * M_PI);
double s9 = sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.9 * M_PI);
double c9 = cos(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.9 * M_PI);
double sk = sin(kappa * x(2));
double ck = cos(kappa * x(2));
f(0) = 0.55 * (4.0 + 3.0 * kappa * kappa) * s0 * ck +
0.6 * (M_SQRT2 - kappa * kappa) * s4 * ck -
0.65 * M_SQRT2 * kappa * kappa * c9 * sk;
f(1) = 0.55 * (M_SQRT2 - kappa * kappa) * s0 * ck +
0.6 * (4.0 + 3.0 * kappa * kappa) * s4 * ck +
0.65 * M_SQRT2 * s9 * ck -
0.65 * M_SQRT2 * kappa * kappa * c9 * sk;
f(2) = 0.6 * M_SQRT2 * s4 * ck -
M_SQRT2 * kappa * kappa * (0.55 * c0 + 0.6 * c4) * sk
+ 1.3 * (2.0 + kappa * kappa) * s9 * ck;
}
}