-
-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathmain.py
84 lines (67 loc) · 2.43 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import os
import time
from typing import List
import torch
import uvicorn
from fastapi import FastAPI
from loguru import logger
from pydantic import BaseModel, Field
from transformers import LayoutLMv3ForTokenClassification
from v3.helpers import MAX_LEN, parse_logits, prepare_inputs, boxes2inputs
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = (
LayoutLMv3ForTokenClassification.from_pretrained(
os.getenv("LOAD_PATH", "hantian/layoutreader")
)
.bfloat16()
.to(device)
.eval()
)
app = FastAPI()
@app.get("/config")
def get_config():
return {
"max_len": MAX_LEN,
}
class PredictRequest(BaseModel):
boxes: List[List[float]] = Field(
...,
examples=[[[2, 2, 3, 3], [1, 1, 2, 2]]],
description="Boxes of [left, top, right, bottom]",
)
width: float = Field(..., examples=[5], description="Page width")
height: float = Field(..., examples=[5], description="Page height")
class PredictResponse(BaseModel):
orders: List[int] = Field(..., examples=[[1, 0]], description="The order of spans.")
elapsed: float = Field(
..., examples=[0.123], description="Elapsed time in seconds."
)
def do_predict(boxes: List[List[int]]) -> List[int]:
inputs = boxes2inputs(boxes)
inputs = prepare_inputs(inputs, model)
logits = model(**inputs).logits.cpu().squeeze(0)
return parse_logits(logits, len(boxes))
@app.post("/predict")
def predict(request: PredictRequest) -> PredictResponse:
x_scale = 1000.0 / request.width
y_scale = 1000.0 / request.height
boxes = []
logger.info(f"Scale: {x_scale}, {y_scale}, Boxes len: {len(request.boxes)}")
for left, top, right, bottom in request.boxes:
left = round(left * x_scale)
top = round(top * y_scale)
right = round(right * x_scale)
bottom = round(bottom * y_scale)
assert (
1000 >= right >= left >= 0 and 1000 >= bottom >= top >= 0
), f"Invalid box. right: {right}, left: {left}, bottom: {bottom}, top: {top}"
boxes.append([left, top, right, bottom])
start = time.time()
orders = do_predict(boxes)
ret = PredictResponse(orders=orders, elapsed=time.time() - start)
logger.info(f"Input Length: {len(boxes)}, Predicted in {ret.elapsed:.3f}s.")
if torch.cuda.is_available():
torch.cuda.empty_cache()
return ret
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=8000)