-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain_ftp1_enc_newbn.py
500 lines (394 loc) · 21.5 KB
/
main_ftp1_enc_newbn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
# Main code for training ERFNet model in Cityscapes dataset
# Sept 2017
# Eduardo Romera
#######################
# individually loads all 3 datasets and handles them separately
# in all ICL models, at 1 time only 1 dataset will be trained. but testing/val will be done on all datasets
import os
import random
import time
import numpy as np
import torch
import math
import re
from PIL import Image, ImageOps
from argparse import ArgumentParser
from torch.optim import SGD, Adam, lr_scheduler
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision.transforms import Compose, CenterCrop, Normalize, Resize, Pad
from torchvision.transforms import ToTensor, ToPILImage
from dataset import VOC12, cityscapes, IDD, BDD100k
from transform import Relabel, ToLabel, Colorize
import itertools
from models.erfnet_ftp1 import Net as Net_ftp1
from iouEval import iouEval, getColorEntry
from shutil import copyfile
from torch.utils.tensorboard import SummaryWriter
from torchsummary import summary
NUM_CHANNELS = 3
# default value given, will be overwritten by args.num_classes #cityscapes=20, IDD=27, BDD=20 (same as cityscapes)
NUM_CLASSES_old = 20
NUM_CLASSES_new = 20
NUM_CLASSES = 27 # this is to keep check on background relabeling inside MyCoTransform()
color_transform = Colorize(NUM_CLASSES_new) # to be modified
image_transform = ToPILImage()
class MyCoTransform(object):
def __init__(self, augment=True, height=512, width=1024):
# self.enc = enc
self.augment = augment
self.height = height
self.width = width
pass
def __call__(self, input, target):
input = Resize([self.height, self.width], Image.BILINEAR)(input)
target = Resize([self.height, self.width], Image.NEAREST)(target)
if(self.augment):
# Random hflip
hflip = random.random()
if (hflip < 0.5):
input = input.transpose(Image.FLIP_LEFT_RIGHT)
target = target.transpose(Image.FLIP_LEFT_RIGHT)
# Random translation 0-2 pixels (fill rest with padding
transX = random.randint(-2, 2)
transY = random.randint(-2, 2)
input = ImageOps.expand(input, border=(transX, transY, 0, 0), fill=0)
target = ImageOps.expand(target, border=(transX, transY, 0, 0),
fill=255) # pad label filling with 255
input = input.crop((0, 0, input.size[0]-transX, input.size[1]-transY))
target = target.crop((0, 0, target.size[0]-transX, target.size[1]-transY))
input = ToTensor()(input)
target = ToLabel()(target)
target = Relabel(255, NUM_CLASSES-1)(target)
return input, target
class CrossEntropyLoss2d(torch.nn.Module):
def __init__(self, weight=None):
super().__init__()
self.loss = torch.nn.NLLLoss2d(weight)
def forward(self, outputs, targets):
return self.loss(torch.nn.functional.log_softmax(outputs, dim=1), targets)
'''
finetune = False : freeze encoder and old decoders, train only new decoder (FEATURE EXTRACTION)
finetune = True : freeze only old decoders, train new decoder + shared encoder (FINETUNING)
BN - in this file,
decoder_new : will update BN
decoder_old : will not update BN in training
encoder : will update BN in training FE and FT experiments.
'''
def train(args, finetune=False):
global NUM_CLASSES
best_acc = 0
tf_dir = 'runs_{}_{}_{}{}'.format(
args.model, args.num_epochs, args.batch_size, args.model_name_suffix)
writer = SummaryWriter('Finetuning_Baselines/' + tf_dir)
# we are training only on new dataset.
# VALIDATING on old datasets.
print('old dataset: ', args.dataset_old)
print('new dataset: ', args.dataset_new)
weight_IDD = torch.tensor([3.235635601598852, 6.76221624390441, 9.458242359884549, 9.446818215454014, 9.947040673126763, 9.789672819856547, 9.476665808564432, 10.465565126694731, 9.59189547383129,
7.637805282159825, 8.990899026692638, 9.26222234098628, 10.265657138809514, 9.386517631614392, 8.357391489170013, 9.910382864314824, 10.389977663948363, 8.997422571963602,
10.418070541191673, 10.483262606962834, 9.511436923349441, 7.597725385711079, 6.1734896019878205, 9.787631041755187, 3.9178330193378708, 4.417448652936843, 10.313160683418731])
weight_BDD = torch.tensor([3.6525147483016243, 8.799815287822142, 4.781908267406055, 10.034828238618045, 9.5567865464289, 9.645099012085169, 10.315292989325766, 10.163473632969513, 4.791692009441432,
9.556915153488912, 4.142994047786311, 10.246903827488143, 10.47145010979545, 6.006704177894196, 9.60620532303246, 9.964959813857726, 10.478333987902301, 10.468010534454706,
10.440929141422366, 3.960822533003462])
weight_city = torch.tensor([2.8159904084894922, 6.9874672455551075, 3.7901719017455604, 9.94305485286704, 9.77037625072462, 9.511470001589007, 10.310780572569994, 10.025305236316246, 4.6341256102158805,
9.561389195953845, 7.869695292372276, 9.518873463871952, 10.374050047877898, 6.662394711556909, 10.26054487392723, 10.28786101490449, 10.289883605859952, 10.405463349170795,
10.138502340710136, 5.131658171724055])
# weight[NUM_CLASSES_new-1] = 0
weight_city[19] = 0
weight_BDD[19] = 0
weight_IDD[26] = 0
co_transform = MyCoTransform(augment=True, height=args.height, width=args.width) # 1024)
co_transform_val = MyCoTransform(augment=False, height=args.height, width=args.width) # 1024)
dataset_cs_val = cityscapes('/ssd_scratch/cvit/prachigarg/cityscapes/', co_transform_val, 'val')
dataset_cs_train = cityscapes('/ssd_scratch/cvit/prachigarg/cityscapes/', co_transform, 'train')
dataset_bdd_val = BDD100k('/ssd_scratch/cvit/prachigarg/bdd100k/seg/', co_transform_val, 'val')
dataset_bdd_train = BDD100k('/ssd_scratch/cvit/prachigarg/bdd100k/seg/', co_transform, 'train')
dataset_idd_val = IDD('/ssd_scratch/cvit/prachigarg/IDD_Segmentation/', co_transform_val, 'val')
dataset_idd_train = IDD('/ssd_scratch/cvit/prachigarg/IDD_Segmentation/', co_transform, 'train')
if args.dataset_old == 'cityscapes':
print('loading CS as validation dataset, (old - step 1)')
loader_val_old = DataLoader(dataset_cs_val, num_workers=args.num_workers,
batch_size=args.batch_size, shuffle=False)
weight_old = weight_city
elif args.dataset_old == 'BDD':
print('loading BDD as validation dataset, (old - step 1)')
loader_val_old = DataLoader(dataset_bdd_val, num_workers=args.num_workers,
batch_size=args.batch_size, shuffle=False)
weight_old = weight_BDD
elif args.dataset_old == 'IDD':
print('loading IDD as validation dataset, (old - step 1)')
loader_val_old = DataLoader(dataset_idd_val, num_workers=args.num_workers,
batch_size=args.batch_size, shuffle=False)
weight_old = weight_IDD
if args.dataset_new == 'cityscapes':
print('loading CS as train, val datasets (current step, new dataset)')
loader = DataLoader(dataset_cs_train, num_workers=args.num_workers,
batch_size=args.batch_size, shuffle=True)
loader_val = DataLoader(dataset_cs_val, num_workers=args.num_workers,
batch_size=args.batch_size, shuffle=False)
weight = weight_city
elif args.dataset_new == 'BDD':
print('loading BDD as train, val datasets (current step, new dataset)')
loader = DataLoader(dataset_bdd_train, num_workers=args.num_workers,
batch_size=args.batch_size, shuffle=True)
loader_val = DataLoader(dataset_bdd_val, num_workers=args.num_workers,
batch_size=args.batch_size, shuffle=False)
weight = weight_BDD
elif args.dataset_new == 'IDD':
print('loading IDD as train, val datasets (current step, new dataset)')
loader = DataLoader(dataset_idd_train, num_workers=args.num_workers,
batch_size=args.batch_size, shuffle=True)
loader_val = DataLoader(dataset_idd_val, num_workers=args.num_workers,
batch_size=args.batch_size, shuffle=False)
weight = weight_IDD
if args.cuda:
weight = weight.cuda()
weight_old = weight_old.cuda()
criterion = CrossEntropyLoss2d(weight)
criterion_old = CrossEntropyLoss2d(weight_old) # to validate the old (step 1) dataset.
print(type(criterion))
print('old weights: ', weight_old)
print('new weights: ', weight)
savedir = f'../save/{args.savedir}'
automated_log_path = savedir + "/automated_log.txt"
modeltxtpath = savedir + "/model.txt"
if (not os.path.exists(automated_log_path)): # dont add first line if it exists
with open(automated_log_path, "a") as myfile:
myfile.write("Epoch\t\tTrain-loss\t\tTest-loss\t\tTrain-IoU\t\tTest-IoU\t\tlearningRate")
# Load Model
assert os.path.exists(args.model + ".py"), "Error: model definition not found"
model = Net_ftp1(NUM_CLASSES_old, NUM_CLASSES_new)
if args.cuda:
model = torch.nn.DataParallel(model).cuda()
if args.state:
print('\check, saved model keys\n')
saved_model = torch.load(args.state)
new_dict_load = {}
for k, v in saved_model['state_dict'].items():
# print(k)
nkey = re.sub("decoder", "decoder_old", k)
new_dict_load[nkey] = v
model.load_state_dict(new_dict_load, strict=False)
print('\nLOADED SAVED CITYSCAPES ENC -> ENC, DECODER --> OLD_DECODER for finetuning multi-head model on {}\n'.format(args.dataset_new))
# got the saved model loaded into defined model. (encoder + old decoder weights get picked up from saved model)
# weights actually getting loaded or not checking remains
print('args.finetune: ', args.finetune)
for name, m in model.named_parameters():
if 'decoder_old' in name:
m.requires_grad = False
finetune_params = list(model.module.encoder.parameters()) + \
list(model.module.decoder_new.parameters())
if finetune:
print('finetuning optimizer')
optimizer = Adam(finetune_params, 5e-4, (0.9, 0.999),
eps=1e-08, weight_decay=1e-4)
else:
print('non-finetuning optimizer')
optimizer = Adam(model.module.decoder_new.parameters(), 5e-4, (0.9, 0.999),
eps=1e-08, weight_decay=1e-4) # feature extraction but BN of shared encoder gets updated
print('\n\n')
for name, m in model.named_parameters():
print(name, m.requires_grad)
start_epoch = 1
def lambda1(epoch): return pow((1-((epoch-1)/args.num_epochs)), 0.9) # scheduler 2
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1) # scheduler 2
for epoch in range(start_epoch, args.num_epochs+1):
print("----- TRAINING - EPOCH", epoch, "-----")
scheduler.step(epoch)
NUM_CLASSES = NUM_CLASSES_new
epoch_loss = []
time_train = []
doIouTrain = args.iouTrain
if (doIouTrain):
iouEvalTrain = iouEval(NUM_CLASSES_new, NUM_CLASSES_new-1)
usedLr = 0
for param_group in optimizer.param_groups:
print("LEARNING RATE: ", param_group['lr'])
usedLr = float(param_group['lr'])
model.train() # the encoder is allowed to update BN running vars acc to new dataset. but old decoder BN should not get updated
# model.module.decoder_old.eval()
# images, labels is of the dataset that is being trained on in this ICL experiment -
# taking cityscapes pre-trained ERFNet and training BDD -decoder head + share encoder in a fine-tuning setting
for step, (images, labels) in enumerate(loader):
if epoch == start_epoch and step == 1:
print('image size new: ', images.size())
print('labels size new: ', labels.size())
print('labels are: ', np.unique(labels.numpy()))
start_time = time.time()
if args.cuda:
images = images.cuda()
labels = labels.cuda()
inputs = Variable(images)
targets = Variable(labels)
outputs = model(inputs, decoder_old=False, decoder_new=True)
optimizer.zero_grad()
loss = criterion(outputs, targets[:, 0])
loss.backward()
optimizer.step()
epoch_loss.append(loss.item())
time_train.append(time.time() - start_time)
if (doIouTrain):
iouEvalTrain.addBatch(outputs.max(1)[1].unsqueeze(1).data, targets.data)
if args.steps_loss > 0 and step % args.steps_loss == 0:
average = sum(epoch_loss) / len(epoch_loss)
print(f'loss: {average:0.4} (epoch: {epoch}, step: {step})',
"// Avg time/img: %.4f s" % (sum(time_train) / len(time_train) / args.batch_size))
average_epoch_loss_train = sum(epoch_loss) / len(epoch_loss)
print('epoch took: ', sum(time_train))
iouTrain = 0
if (doIouTrain):
iouTrain, iou_classes = iouEvalTrain.getIoU()
iouStr = getColorEntry(iouTrain)+'{:0.2f}'.format(iouTrain*100) + '\033[0m'
print("EPOCH IoU on TRAIN set: ", iouStr, "%")
print("----- VALIDATING - EPOCH", epoch, "--current---")
average_epoch_loss_val_new, iouVal_new = eval(
model, loader_val, criterion, NUM_CLASSES_new, epoch, task=1)
print("----- VALIDATING - EPOCH", epoch, "--old----")
# validating on old task dataset - cityscapes
average_epoch_loss_val_old, iouVal_old = eval(
model, loader_val_old, criterion_old, NUM_CLASSES_old, epoch, task=0)
# logging tensorboard plots - epoch wise loss and accuracy. Not calculating iouTrain as that will slow down training
info = {'train_loss': average_epoch_loss_train,
'val_loss_{}'.format(args.dataset_new): average_epoch_loss_val_new, 'val_accuracy_{}'.format(args.dataset_new): iouVal_new,
'val_loss_{}'.format(args.dataset_old): average_epoch_loss_val_old, 'val_accuracy_{}'.format(args.dataset_old): iouVal_old}
for tag, value in info.items():
writer.add_scalar(tag, value, epoch)
# remember best valIoU and save checkpoint
if iouVal_new == 0: # find best acc to new dataset/task
current_acc = -average_epoch_loss_val_new
else:
current_acc = iouVal_new
is_best = current_acc > best_acc
best_acc = max(current_acc, best_acc)
filenameCheckpoint = savedir + \
'/checkpoint_{}_{}_{}_{}.pth.tar'.format(args.model,
args.num_epochs, args.batch_size, args.model_name_suffix)
filenameBest = savedir + \
'/model_best_{}_{}_{}_{}.pth.tar'.format(args.model,
args.num_epochs, args.batch_size, args.model_name_suffix)
save_checkpoint({
'epoch': epoch + 1,
'arch': str(model),
'state_dict': model.state_dict(),
'best_acc': best_acc,
'optimizer': optimizer.state_dict(),
}, is_best, filenameCheckpoint, filenameBest)
# save checkpoint every 50 epochs
# if epoch % 100 == 0:
# filenameCheckpoint50 = savedir + \
# '/checkpoint_{}_{}_{}_{}.pth.tar'.format(args.model,
# epoch+1, args.batch_size, args.model_name_suffix)
#
# save_checkpoint({
# 'epoch': epoch + 1,
# 'arch': str(model),
# 'state_dict': model.state_dict(),
# 'best_acc': best_acc,
# 'optimizer': optimizer.state_dict(),
# }, False, filenameCheckpoint50, filenameBest)
if (is_best):
with open(savedir + "/best.txt", "w") as myfile:
myfile.write("Best epoch is %d, with Val-IoU= %.4f" % (epoch, iouVal_new))
# SAVE TO FILE A ROW WITH THE EPOCH RESULT (train loss, val loss, train IoU, val IoU)
# Epoch Train-loss Test-loss Train-IoU Test-IoU learningRate
with open(automated_log_path, "a") as myfile:
myfile.write("\n%d\t\t%.4f\t\t%.4f\t\t%.4f\t\t%.4f\t\t%.4f\t\t%.4f\t\t%.8f" % (
epoch, average_epoch_loss_train, average_epoch_loss_val_new, average_epoch_loss_val_old, iouTrain, iouVal_new, iouVal_old, usedLr))
return(model) # return model (convenience for encoder-decoder training)
def eval(model, dataset_loader, criterion, num_classes, epoch, task=1):
# Validate on 500 val images after each epoch of training
global NUM_CLASSES
model.eval()
epoch_loss_val = []
time_val = []
NUM_CLASSES = num_classes
iouEvalVal = iouEval(num_classes, num_classes-1)
if task == 1:
decoder_old = False
decoder_new = True
elif task == 0:
decoder_old = True
decoder_new = False
print('num_classes: ', NUM_CLASSES, 'decoder_old: ', decoder_old, 'decoder_new: ', decoder_new)
with torch.no_grad():
for step, (images, labels) in enumerate(dataset_loader):
start_time = time.time()
inputs = images.cuda()
targets = labels.cuda()
outputs = model(inputs, decoder_old, decoder_new)
if step == 1:
print('------------------', outputs.size(), targets.size())
loss = criterion(outputs, targets[:, 0])
epoch_loss_val.append(loss.item())
time_val.append(time.time() - start_time)
iouEvalVal.addBatch(outputs.max(1)[1].unsqueeze(1).data, targets.data)
if 50 > 0 and step % 50 == 0:
average = sum(epoch_loss_val) / len(epoch_loss_val)
print(f'VAL loss: {average:0.4} (epoch: {epoch}, step: {step})',
"// Avg time/img: %.4f s" % (sum(time_val) / len(time_val) / 6))
average_epoch_loss_val = sum(epoch_loss_val) / len(epoch_loss_val)
iouVal = 0
iouVal, iou_classes = iouEvalVal.getIoU()
iouStr = getColorEntry(iouVal)+'{:0.2f}'.format(iouVal*100) + '\033[0m'
print("EPOCH IoU on VAL set: ", iouStr, "%")
print('check val fn, loss, acc: ', average_epoch_loss_val, iouVal)
return average_epoch_loss_val, iouVal
def save_checkpoint(state, is_best, filenameCheckpoint, filenameBest):
torch.save(state, filenameCheckpoint)
print("Saving model: ", filenameCheckpoint)
if is_best:
print("Saving model as best: ", filenameBest)
torch.save(state, filenameBest)
def main(args):
global NUM_CLASSES_old
global NUM_CLASSES_new
NUM_CLASSES_old = args.num_classes_old # this will become a list
NUM_CLASSES_new = args.num_classes_new
# print('\ndataset old: ', args.dataset_old)
# print('\ndataset new: ', args.dataset_new)
savedir = f'../save/{args.savedir}'
if not os.path.exists(savedir):
os.makedirs(savedir)
with open(savedir + '/opts.txt', "w") as myfile:
myfile.write(str(args))
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
print("====== FINETUNING TRAINING OF NEW_DECODER & SHARED ENCODER ========")
model = train(args, args.finetune) # Train model
print("========== TRAINING FINISHED ===========")
if __name__ == '__main__':
parser = ArgumentParser()
# NOTE: cpu-only has not been tested so you might have to change code if you deactivate this flag
parser.add_argument('--cuda', action='store_true', default=True)
parser.add_argument('--model', default="erfnet_ftp1")
parser.add_argument('--dataset-old', default="cityscapes")
parser.add_argument('--dataset-new', default="BDD")
# 27 for level 3 of IDD, 20 for BDD and city
# cityscapes for now. to be converted into list of old num classes
parser.add_argument('--num-classes-old', type=int, default=20)
parser.add_argument('--num-classes-new', type=int, default=20)
parser.add_argument('--state')
parser.add_argument('--finetune', action='store_true')
parser.add_argument('--port', type=int, default=8097)
# parser.add_argument('--datadir', default=os.getenv("HOME") + "/datasets/cityscapes/")
parser.add_argument('--height', type=int, default=512)
parser.add_argument('--width', type=int, default=1024)
parser.add_argument('--num-epochs', type=int, default=150)
parser.add_argument('--num-workers', type=int, default=4)
parser.add_argument('--batch-size', type=int, default=6)
parser.add_argument('--steps-loss', type=int, default=50)
parser.add_argument('--steps-plot', type=int, default=50)
# You can use this value to save model every X epochs
parser.add_argument('--epochs-save', type=int, default=0)
parser.add_argument('--savedir', required=True)
parser.add_argument('--decoder', action='store_true')
# , default="../trained_models/erfnet_encoder_pretrained.pth.tar")
parser.add_argument('--pretrainedEncoder')
# recommended: False (takes more time to train otherwise)
parser.add_argument('--iouTrain', action='store_true', default=False)
parser.add_argument('--iouVal', action='store_true', default=True)
# Use this flag to load last checkpoint for training
parser.add_argument('--resume', action='store_true')
parser.add_argument('--model-name-suffix', default="Finetune-CStoBDD-final")
main(parser.parse_args())