-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbrainTumor.py
176 lines (123 loc) · 5.57 KB
/
brainTumor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import os
from glob import glob
from PIL import Image
from sklearn.utils import resample
import tensorflow
from tensorflow import keras
from tensorflow.keras.utils import to_categorical
from sklearn.model_selection import train_test_split
import keras
from keras.utils.np_utils import to_categorical
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D, BatchNormalization
np.random.seed(42)
#Download datasets
! kaggle datasets download -d sartajbhuvaji/brain-tumor-classification-mri
! kaggle datasets download -d ahmedhamada0/brain-tumor-detection
#Unzip them
! unzip brain-tumor-classification-mri
! unzip brain-tumor-detection
#These are the lists which is going to contain image paths of each tumor
gi_list=[]
me_list=[]
no_list=[]
pi_list=[]
yes_list=[]
#Going through each folder to get 'imagePath' and adding them to lists(gi_list,me_list,no_list,pi_list)
for image_path in glob(os.path.join('/path/Testing/glioma_tumor/','*.jpg')):
gi_list.append(image_path)
for image_path in glob(os.path.join('/path/Training/glioma_tumor/','*.jpg')):
gi_list.append(image_path)
for image_path in glob(os.path.join('/path/Testing/meningioma_tumor/','*.jpg')):
me_list.append(image_path)
for image_path in glob(os.path.join('/path/Training/meningioma_tumor/','*.jpg')):
me_list.append(image_path)
for image_path in glob(os.path.join('/path/Testing/no_tumor/','*.jpg')):
no_list.append(image_path)
for image_path in glob(os.path.join('/path/Training/no_tumor/','*.jpg')):
no_list.append(image_path)
for image_path in glob(os.path.join('/path/Testing/pituitary_tumor/','*.jpg')):
pi_list.append(image_path)
for image_path in glob(os.path.join('/path/Training/pituitary_tumor/','*.jpg')):
pi_list.append(image_path)
for image_path in glob(os.path.join('/path/yes/','*.jpg')):
yes_list.append(image_path)
#Printing the lengths of each lists to see count
print(len(gi_list))
print(len(me_list))
print(len(no_list))
print(len(pi_list))
print(len(yes_list))
#Converting those images --> 32X32 images as np array
gi_list_array = list(map(lambda x: np.asarray(Image.open(x).resize((32,32))),gi_list))
me_list_array = list(map(lambda x: np.asarray(Image.open(x).resize((32,32))),me_list))
no_list_array = list(map(lambda x: np.asarray(Image.open(x).resize((32,32))),no_list))
pi_list_array = list(map(lambda x: np.asarray(Image.open(x).resize((32,32))),pi_list))
#The yes_list containes some gray scaled images, so we need to convert them into RGB and then resize them
yes_list_array = list(map(lambda x: np.asarray(Image.open(x).convert('RGB').resize((32,32))),yes_list))
#Balancing the data
n_samples = 1000
gi_list_balanced = resample(gi_list_array, replace=True, n_samples=n_samples, random_state=42)
me_list_balanced = resample(me_list_array, replace=True, n_samples=n_samples, random_state=42)
no_list_balanced = resample(no_list_array, replace=True, n_samples=n_samples, random_state=42)
pi_list_balanced = resample(pi_list_array, replace=True, n_samples=n_samples, random_state=42)
yes_list_balanced = resample(yes_list_array, replace=True, n_samples=n_samples, random_state=42)
#Adding those balanced data to a new DataFrame with labels
brain_df_0= pd.DataFrame({'image':gi_list_balanced,'label':0})
brain_df_1= pd.DataFrame({'image':me_list_balanced, 'label':1})
brain_df_2= pd.DataFrame({'image':no_list_balanced, 'label':2})
brain_df_3= pd.DataFrame({'image':pi_list_balanced, 'label':3})
brain_df_4= pd.DataFrame({'image':yes_list_balanced, 'label':4})
#Converting those DataFrames into a single new DataFrame
brain_df_final = pd.concat([brain_df_0, brain_df_1, brain_df_2, brain_df_3, brain_df_4])
brain_df_final.shape
#Creating the X and Y for Training and Testing
#Converting 'image(s)' from DF(brain_df_final) to np.array
X = np.asarray(brain_df_final['image'].tolist())
#Sclling those values from 0-255 to 0-1.
X=X/255.
#Assigning 'label(s)' from DF(brain_df_final) to Y
Y=brain_df_final['label']
#Since this a multiclass problem we need to conver those Y values into 'categorical'
Y_cat = to_categorical(Y, num_classes=5)
#Will Split Training and Testing
x_train, x_test, y_train, y_test = train_test_split(X, Y_cat, test_size=0.25, random_state=42)
################################## MODEL ##############################################
num_calasses = 5
model_1 = Sequential()
model_1.add(Conv2D(128, (3, 3), activation="relu", input_shape=(32, 32, 3)))
#BatchNormalization
model_1.add(MaxPool2D(pool_size=(2,2)))
model_1.add(Dropout(0.3))
model_1.add(Conv2D(64, (3, 3), activation="relu"))
#BatchNormalization
model_1.add(MaxPool2D(pool_size=(2,2)))
model_1.add(Dropout(0.3))
model_1.add(Conv2D(32, (3, 3), activation="relu"))
#BatchNormalization
model_1.add(MaxPool2D(pool_size=(2,2)))
model_1.add(Dropout(0.3))
model_1.add(Flatten())
model_1.add(Dense(16))
model_1.add(Dense(5, activation="softmax"))
model_1.summary()
model_1.compile(loss="categorical_crossentropy", optimizer="Adam", metrics=["acc"])
#Let's Train
batch_size = 16
epochs = 50
history = model_1.fit(x_train, y_train, epochs=epochs, batch_size=batch_size, validation_data=(x_test, y_test), verbose=2)
#Model accuracy
acc = model_1.evaluate(x_test, y_test)
print('Accuracy = ', acc[1]*100, '%') #acc was about 77%
#Save model
model_1.save('BrainTumor.h5')
#Testing with a single image
from keras.preprocessing import image
img = image.load_img('/path/no/no1455.jpg', target_size = (32, 32))
img = image.img_to_array(img)
img = np.expand_dims(img, axis = 0)
prediction = model_1.predict(img)
print(prediction)