-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathcgls.m
executable file
·172 lines (147 loc) · 4.8 KB
/
cgls.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
function [x,flag,resNE,iter] = cgls(A,b,shift,tol,maxit,prnt,x0)
%CGLS Conjugate Gradient Least Squares
% X = CGLS(A,B) attempts to solve the system of linear equations A*X=B
% for X. The M-by-N coefficient matrix A and right hand side column
% vector B of length N are required input arguments.
%
% X = CGLS(AFUN,B) accepts a function handle AFUN instead of the matrix
% A. AFUN(X,1) accepts a vector input X and returns the matrix-vector
% product A*X. AFUN(X,2) returns the matrix-vector product A'*X instead.
% In all of the following syntaxes, you can replace A by AFUN.
%
% X = CGLS(A,B,SHIFT) specifies a regularization parameter SHIFT. If
% SHIFT is 0, then CGLS is Hestenes and Stiefel's specialized form of the
% conjugate-gradient method for least-squares problems. If SHIFT is
% nonzero, the system (A'*A + SHIFT*I)*X = A'*B is solved. Here I is the
% N-by-N identity matrix.
%
% X = CGLS(A,B,SHIFT,TOL) specifies the tolerance of the method. If TOL
% is [] then CGLS uses the default, 1e-6.
%
% X = CGLS(A,B,SHIFT,TOL,MAXIT) specifies the maximum number of
% iterations. If MAXIT is [] then CGLS uses the default, 20.
%
% X = CGLS(A,B,SHIFT,TOL,MAXIT,PRNT) specifies if output should be
% generated during each iteration (PRNT == true). If PRNT is [] then no
% output is given.
%
% X = CGLS(A,B,SHIFT,TOL,MAXIT,PRNT,X0) specifies the N-by-1 initial
% solution that is used. If X0 is [] then CGLS uses the default,
% X0 = zeros(N,1).
%
% [X,FLAG] = CGLS(A,B,...) also returns a convergence FLAG:
% 1. CGLS converged to the desired tolerance TOL within MAXIT
% iterations.
% 2. CGLS iterated MAXIT times but did not converge.
% 3. Matrix (A'*A + SHIFT*I) seems to be singular or indefinite.
% 4. Instability seems likely meaning (A'*A + SHIFT*I) indefinite and
% NORM(X) decreased.
%
% [X,FLAG,RESNE] = CGLS(A,B,...) also returns the relative residual for
% the normal equations NORM(A'*B - (A'*A + SHIFT*I)*X)/NORM(A'*B).
%
% [X,FLAG,RESNE,ITER] = CGLS(A,B,...) also returns the iteration number
% at which X was computed: 0 <= ITER <= MAXIT.
%
% See also LSQR, PCG, FUNCTION_HANDLE.
% 01 Sep 1999: First version.
% Per Christian Hansen (DTU) and Michael Saunders (visiting
% DTU).
% 22 Jan 2013: Updated syntax and documentation.
% Folkert Bleichrodt (CWI).
% Assign default values to unspecified parameters
if (nargin < 3 || isempty(shift)), shift = 0; end
if (nargin < 4 || isempty(tol)) , tol = 1e-6; end
if (nargin < 5) , maxit = []; end
if (nargin < 6 || isempty(prnt)) , prnt = 0; end
if (nargin < 7) , x0 = []; end
if isa(A, 'numeric')
explicitA = true;
elseif isa(A, 'function_handle')
explicitA = false;
else
error('A must be numeric or a function handle.');
end
% handle initial guess, if passed as argument
if explicitA
[m,n] = size(A);
if ~isempty(x0)
x = x0;
else
x = zeros(n,1);
end
r = b - A*x;
s = A'*r-shift*x;
else
m = size(b,1);
if ~isempty(x0)
x = x0;
r = b - A(x,1);
s = A(r,2) - shift*x;
n = size(s,1);
else
r = b;
s = A(b,2);
n = size(s,1);
x = zeros(n,1);
end
end
% determine default for maxit
if isempty(maxit)
maxit = min([m,n,20]);
end
% Initialize
p = s;
norms0 = norm(s);
gamma = norms0^2;
normx = norm(x);
xmax = normx;
k = 0;
flag = 0;
if prnt
head = ' k x(1) x(n) normx resNE';
form = '%5.0f %16.10g %16.10g %9.2g %12.5g\n';
disp(' '); disp(head);
fprintf(form, k, x(1), x(n), normx, 1);
end
indefinite = 0;
%--------------------------------------------------------------------------
% Main loop
%--------------------------------------------------------------------------
while (k < maxit) && (flag == 0)
k = k+1;
% q = A p
if explicitA
q = A*p;
else
q = A(p,1);
end
delta = norm(q)^2 + shift*norm(p)^2;
if delta <= 0, indefinite = 1; end
if delta == 0, delta = eps; end
alpha = gamma / delta;
x = x + alpha*p;
r = r - alpha*q;
if explicitA
s = A'*r - shift*x;
else
s = A(r,2) - shift*x;
end
norms = norm(s);
gamma1 = gamma;
gamma = norms^2;
beta = gamma / gamma1;
p = s + beta*p;
% Convergence
normx = norm(x);
xmax = max(xmax, normx);
flag = (norms <= norms0 * tol) || (normx * tol >= 1);
% Output
resNE = norms / norms0;
if prnt, fprintf(form, k, x(1), x(n), normx, resNE); end
end % while
iter = k;
shrink = normx/xmax;
if k == maxit, flag = 2; end
if indefinite, flag = 3; end
if shrink <= sqrt(tol), flag = 4; end