-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtest_noisy_exact.m
267 lines (230 loc) · 9.2 KB
/
test_noisy_exact.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
%% some codes to test out the channel noise sort of setting for power method
%%move all the codes that try to generate more noise along the true
%%direction to a different file...
eige
clear
clc
close all
rng shuffle
%% define data model parameters
n = 1000;
r = 50;
signal_energy = 1.1;
noise_energy = 1.0;
ch_noise_energy = 1e-8;
%% generate the "rectangular" data points, and also the sample covariance
u_orth = orth(randn(n, 2 * (r+1)));
u_true = u_orth(:,1:r);
Y = u_orth(:,1:r+1) * diag([repmat(signal_energy, 1, r), noise_energy]) * u_orth(:, r+2:end)';
X = Y * Y';
%X = X / (0.5 * signal_energy^2);
%verifying that the sample PC is close to the true PC
[u_init, s_init, v_init] = svds(X, r);
fprintf('SE after adding small noise: %d \n', ...
sin(subspace(u_true, u_init)))
figure;
plot(svd(X))
title('singular values of original matrix')
%% vanilla power method -- with normalization
power_iter = 500;
taubatch = 10;
u_vanilla_norm = randn(n, r);
u_vanilla_norm = u_vanilla_norm / norm(u_vanilla_norm);
conv_vanilla_norm = zeros(1, power_iter+1);
conv_vanilla_norm(1) = sin(subspace(u_init, u_vanilla_norm));
for ii = 1 : power_iter
u_vanilla_norm = X * u_vanilla_norm;
[u_vanilla_norm, ~ ] = qr(u_vanilla_norm, 0);
%u_vanilla_norm = u_vanilla_norm/norm(u_vanilla_norm);
conv_vanilla_norm(ii+1) = sin(subspace(u_true, u_vanilla_norm));
end
figure;
subplot(221)
plot([1: power_iter+1], log10(conv_vanilla_norm))
axis tight
title('Convergence for vanilla PM')
stry = '$$\log(SE(\hat{u}_t, u))$$';
strx = '$$\mathrm{power\ iterations} (t) $$';
ylabel(stry, 'Interpreter', 'latex', 'FontSize', 18)
xlabel(strx, 'Interpreter', 'latex', 'FontSize', 18)
fprintf('SE for vanilla power method: %d \n', conv_vanilla_norm(end))
%% vanilla power method -- without normalization
u_vanilla = randn(n, r);
conv_vanilla = zeros(1, power_iter+1);
conv_vanilla(1) = sin(subspace(u_true, u_vanilla));
for ii = 1 : power_iter
u_vanilla = X * u_vanilla;
if(~mod(ii, taubatch))
%[u_vanilla,~] = qr(u_vanilla, 0);
u_vanilla = orth(u_vanilla);
end
conv_vanilla(ii+1) = sin(subspace(u_true, u_vanilla));
end
subplot(222)
plot([1: power_iter+1], log10(conv_vanilla))
axis tight
title('Convergence vanilla PM -- without norm')
stry = '$$\log(SE(\hat{u}_t, u))$$';
strx = '$$\mathrm{power\ iterations} (t) $$';
ylabel(stry, 'Interpreter', 'latex', 'FontSize', 18)
xlabel(strx, 'Interpreter', 'latex', 'FontSize', 18)
fprintf('SE for vanilla power method (without norm): %d \n', ...
conv_vanilla_norm(end))
%% channel noise power method -- with normalization
u_noise_norm = randn(n, r);
%u_noise_norm = u_noise_norm / norm(u_noise_norm);
conv_noise_norm = zeros(1, power_iter+1);
conv_noise_norm(1) = sin(subspace(u_true, u_noise_norm));
for ii = 1 : power_iter
ch_noise = ch_noise_energy * randn(n, r);
u_noise_norm = X * u_noise_norm + ch_noise;
%u_noise_norm = u_noise_norm/norm(u_noise_norm);
[u_noise_norm,~] = qr(u_noise_norm, 0);
conv_noise_norm(ii+1) = sin(subspace(u_true, u_noise_norm));
end
subplot(223)
plot([1: power_iter+1], log10(conv_noise_norm))
axis tight
title('with channel noise and normalization')
stry = '$$\log(SE(\hat{u}_t, u))$$';
strx = '$$\mathrm{power\ iterations} (t) $$';
ylabel(stry, 'Interpreter', 'latex', 'FontSize', 18)
xlabel(strx, 'Interpreter', 'latex', 'FontSize', 18)
fprintf('SE for noisy power method: %d \n', conv_noise_norm(end))
%% channel noise power method -- without normalization
u_noise = randn(n, r);
conv_noise = zeros(1, power_iter+1);
conv_noise(1) = sin(subspace(u_true, u_noise));
for ii = 1 : power_iter
ch_noise = ch_noise_energy * randn(n, r);
u_noise = X * u_noise + ch_noise;
conv_noise(ii+1) = sin(subspace(u_true, u_noise));
if(~mod(ii, taubatch))
%[u_noise,~] = qr(u_noise, 0);
u_noise = orth(u_noise);
end
Lamest = u_noise' * X * u_noise;
end
subplot(224)
plot([1: power_iter+1], log10(conv_noise))
axis tight
title('with channel noise but no norm')
stry = '$$\log(SE(\hat{u}_t, u))$$';
strx = '$$\mathrm{power\ iterations} (t) $$';
ylabel(stry, 'Interpreter', 'latex', 'FontSize', 18)
xlabel(strx, 'Interpreter', 'latex', 'FontSize', 18)
fprintf('SE for noisy power method (without norm): %d \n', conv_noise(end))
% figure;
% subplot(211)
%
% plot([1: power_iter+1], log10(conv_vanilla_norm), 'kd', 'LineStyle', '--', 'MarkerSize', 6, 'LineWidth', 2)
% hold
% plot([1: power_iter+1], log10(conv_noise_norm),'rs', 'LineStyle', '-.', 'MarkerSize', 6, 'LineWidth', 2)
% %plot([1: power_iter+1], log10(conv_noise_sig_norm), 'go', 'LineStyle', '-', 'MarkerSize', 6, 'LineWidth', 2)
% axis tight
% grid on
% % legend('noiseless', 'with channel noise', 'with biased channel noise')
% l1 = legend('noiseless', 'with channel noise');
% l1.FontSize = 15;
% stry = '$$\log(SE({u}_t, u_1^*))$$';
% strx = '$$\mathrm{power\ iterations} (t) $$';
% ylabel(stry, 'Interpreter', 'latex', 'FontSize', 18)
% xlabel(strx, 'Interpreter', 'latex', 'FontSize', 18)
% title('PM with normalization')
%
% subplot(212)
% plot([1: power_iter+1], log10(conv_vanilla), 'k+', 'LineStyle', '--', 'MarkerSize', 6, 'LineWidth', 2)
% hold
% plot([1: power_iter+1], log10(conv_noise),'rs', 'LineStyle', '-.', 'MarkerSize', 6, 'LineWidth', 2)
% %plot([1: power_iter+1], log10(conv_noise_sig), 'go', 'LineStyle', '-', 'MarkerSize', 6, 'LineWidth', 2)
% axis tight
% grid on
% % legend('noiseless', 'with channel noise', 'with biased channel noise')
% l1 = legend('noiseless', 'with channel noise');
% l1.FontSize = 15;
%
% stry = '$$\log(SE({u}_t, u_1^*))$$';
% strx = '$$\mathrm{power\ iterations} (t) $$';
% ylabel(stry, 'Interpreter', 'latex', 'FontSize', 18)
% xlabel(strx, 'Interpreter', 'latex', 'FontSize', 18)
% title('PM without normalization')
figure;
plot(linspace(1, power_iter+1, (power_iter)/taubatch+1), log10(conv_noise_norm(1:taubatch:end)),'k+', 'LineStyle', '--', 'MarkerSize', 6, 'LineWidth', 2)
hold
plot(linspace(1, power_iter+1, (power_iter)/taubatch+1), log10(conv_noise(1:taubatch:end)),'rs', 'LineStyle', '-.', 'MarkerSize', 6, 'LineWidth', 2)
%plot([1: power_iter+1], log10(conv_noise_sig_norm), 'go', 'LineStyle', '-', 'MarkerSize', 6, 'LineWidth', 2)
axis tight
grid on
% legend('noiseless', 'with channel noise', 'with biased channel noise')
l1 = legend('normalize every iter', 'normalize after taubatch');
l1.FontSize = 15;
stry = '$$\log(SE({u}_t, u_1^*))$$';
strx = '$$\mathrm{power\ iterations} (t) $$';
ylabel(stry, 'Interpreter', 'latex', 'FontSize', 18)
xlabel(strx, 'Interpreter', 'latex', 'FontSize', 18)
title('PM with normalization')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%the algorithm works even with uniform r.v. initialization as opposed to
%gaussian init. This is interesting, and should ideally be used to
%strengtehn the theory
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%some old codes regarding biased power method!
% val = 1e-3;
% tmpmatrix = val * (u_true * u_true') + sqrt((1 - val^2))/n * (eye(n) - u_true * u_true');
% trace(tmpmatrix)
% R = chol(tmpmatrix);
% %% ``biased channel noise'' with norm
% u_noise_sig_norm = randn(n, r);
% u_noise_sig_norm = u_noise_sig_norm / norm(u_noise_sig_norm);
% conv_noise_sig_norm = zeros(1, power_iter+1);
% conv_noise_sig_norm(1) = sin(subspace(u_true, u_noise_sig_norm));
% for ii = 1 : power_iter
% %ch_noise_sig_norm = ch_noise_energy * randn(n, r);
% ch_noise_sig_norm = ch_noise_energy * R * randn(n, r);
% ch_noise_sig_norm = ch_noise_sig_norm + val * u_true;
% %abs(ch_noise_sig_norm' * u_true)
% %ch_noise_sig_norm = (val * (u_true * u_true') + ...
% % sqrt(1 - val^2) * (eye(n) - u_true * u_true')) * ch_noise_sig_norm;
% u_noise_sig_norm = X * u_noise_sig_norm + ch_noise_sig_norm;
% u_noise_sig_norm = u_noise_sig_norm/norm(u_noise_sig_norm);
% conv_noise_sig_norm(ii+1) = sin(subspace(u_true, u_noise_sig_norm));
% end
%
% subplot(325)
% plot([1: power_iter+1], log10(conv_noise_sig_norm))
% axis tight
% title('biased channel noise with norm')
% stry = '$$\log(SE(\hat{u}_t, u))$$';
% strx = '$$\mathrm{power\ iterations} (t) $$';
% ylabel(stry, 'Interpreter', 'latex', 'FontSize', 18)
% xlabel(strx, 'Interpreter', 'latex', 'FontSize', 18)
%
% fprintf('SE for biased noisy power method (without norm): %d \n', conv_noise_sig_norm(end))
%
%
%
% %% ``biased channel noise''
% u_noise_sig = randn(n, r);
% conv_noise_sig = zeros(1, power_iter+1);
% conv_noise_sig(1) = sin(subspace(u_true, u_noise_sig));
% for ii = 1 : power_iter
% ch_noise_sig = ch_noise_energy * R * randn(n, r);
% ch_noise_sig = ch_noise_sig + val * u_true;
% %ch_noise_sig = (val * (u_true * u_true') + ...
% % sqrt(1 - val^2) * (eye(n) - u_true * u_true')) * ch_noise_sig + ch_noise_sig;
% %abs(ch_noise_sig_norm' * u_true)
% u_noise_sig = X * u_noise_sig + ch_noise_sig;
% conv_noise_sig(ii+1) = sin(subspace(u_true, u_noise_sig));
% end
%
% subplot(326)
% plot([1: power_iter+1], log10(conv_noise_sig))
% axis tight
% title('biased channel noise but no norm')
% stry = '$$\log(SE(\hat{u}_t, u))$$';
% strx = '$$\mathrm{power\ iterations} (t) $$';
% ylabel(stry, 'Interpreter', 'latex', 'FontSize', 18)
% xlabel(strx, 'Interpreter', 'latex', 'FontSize', 18)
%
% fprintf('SE for biased noisy power method (without norm): %d \n', conv_noise_sig(end))
%how to fix the rank r case