forked from SimJeg/FC-DenseNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
data_loader.py
executable file
·48 lines (42 loc) · 1.94 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from dataset_loaders.images.camvid import CamvidDataset
from numpy.random import RandomState
def load_data(dataset, train_crop_size=(224, 224), one_hot=False,
batch_size=10,
horizontal_flip=False,
rng=RandomState(0)):
if isinstance(batch_size, int):
batch_size = [batch_size] * 3
train_iter = CamvidDataset(which_set='train',
batch_size=batch_size[0],
seq_per_video=0,
seq_length=0,
crop_size=train_crop_size,
horizontal_flip=horizontal_flip,
get_one_hot=False,
get_01c=False,
overlap=0,
use_threads=True,
rng=rng)
val_iter = CamvidDataset(which_set='val',
batch_size=batch_size[1],
seq_per_video=0,
seq_length=0,
crop_size=None,
get_one_hot=False,
get_01c=False,
shuffle_at_each_epoch=False,
overlap=0,
use_threads=True,
save_to_dir=False)
test_iter = CamvidDataset(which_set='test',
batch_size=batch_size[2],
seq_per_video=0,
seq_length=0,
crop_size=None,
get_one_hot=False,
get_01c=False,
shuffle_at_each_epoch=False,
overlap=0,
use_threads=True,
save_to_dir=False)
return train_iter, val_iter, test_iter