-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathrun.py
460 lines (401 loc) · 22.4 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
import logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
import argparse
import os
import openai
import json
from tqdm import tqdm
from transformers import AutoTokenizer
import time
import string
import numpy as np
import re
from searcher import SearcherWithinDocs
import yaml
from utils import *
from nltk import sent_tokenize
def remove_citations(sent):
return re.sub(r"\[\d+", "", re.sub(r" \[\d+", "", sent)).replace(" |", "").replace("]", "")
class LLM:
def __init__(self, args):
self.args = args
if args.openai_api:
import openai
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
OPENAI_ORG_ID = os.environ.get("OPENAI_ORG_ID")
OPENAI_API_BASE = os.environ.get("OPENAI_API_BASE")
if args.azure:
openai.api_key = OPENAI_API_KEY
openai.api_base = OPENAI_API_BASE
openai.api_type = 'azure'
openai.api_version = '2023-05-15'
else:
openai.api_key = OPENAI_API_KEY
openai.organization = OPENAI_ORG_ID
self.tokenizer = AutoTokenizer.from_pretrained("gpt2", fast_tokenizer=False) # TODO: For ChatGPT we should use a different one
# To keep track of how much the API costs
self.prompt_tokens = 0
self.completion_tokens = 0
else:
self.model, self.tokenizer = load_model(args.model)
self.prompt_exceed_max_length = 0
self.fewer_than_50 = 0
self.azure_filter_fail = 0
def generate(self, prompt, max_tokens, stop=None):
args = self.args
if max_tokens <= 0:
self.prompt_exceed_max_length += 1
logger.warning("Prompt exceeds max length and return an empty string as answer. If this happens too many times, it is suggested to make the prompt shorter")
return ""
if max_tokens < 50:
self.fewer_than_50 += 1
logger.warning("The model can at most generate < 50 tokens. If this happens too many times, it is suggested to make the prompt shorter")
if args.openai_api:
use_chat_api = ("turbo" in args.model and not args.azure) or ("gpt-4" in args.model and args.azure)
if use_chat_api:
# For chat API, we need to convert text prompts to chat prompts
prompt = [
{'role': 'system', 'content': "You are a helpful assistant that answers the following questions with proper citations."},
{'role': 'user', 'content': prompt}
]
if args.azure:
deploy_name = args.model
if use_chat_api:
is_ok = False
retry_count = 0
while not is_ok:
retry_count += 1
try:
response = openai.ChatCompletion.create(
engine=deploy_name if args.azure else None,
model=args.model,
messages=prompt,
temperature=args.temperature,
max_tokens=max_tokens,
stop=stop,
top_p=args.top_p,
)
is_ok = True
except Exception as error:
if retry_count <= 5:
logger.warning(f"OpenAI API retry for {retry_count} times ({error})")
continue
print(error)
import pdb; pdb.set_trace()
self.prompt_tokens += response['usage']['prompt_tokens']
self.completion_tokens += response['usage']['completion_tokens']
return response['choices'][0]['message']['content']
else:
is_ok = False
retry_count = 0
while not is_ok:
retry_count += 1
try:
response = openai.Completion.create(
engine=deploy_name if args.azure else None,
model=args.model,
prompt=prompt,
temperature=args.temperature,
max_tokens=max_tokens,
top_p=args.top_p,
stop=["\n", "\n\n"] + (stop if stop is not None else [])
)
is_ok = True
except Exception as error:
if retry_count <= 5:
logger.warning(f"OpenAI API retry for {retry_count} times ({error})")
if "triggering Azure OpenAI’s content management policy" in str(error):
# filtered by Azure
self.azure_filter_fail += 1
return ""
continue
print(error)
import pdb; pdb.set_trace()
self.prompt_tokens += response['usage']['prompt_tokens']
self.completion_tokens += response['usage']['completion_tokens']
return response['choices'][0]['text']
else:
inputs = self.tokenizer([prompt], return_tensors="pt").to(self.model.device)
stop = [] if stop is None else stop
stop = list(set(stop + ["\n", "Ċ", "ĊĊ", "<0x0A>"])) # In Llama \n is <0x0A>; In OPT \n is Ċ
stop_token_ids = list(set([self.tokenizer._convert_token_to_id(stop_token) for stop_token in stop] + [self.model.config.eos_token_id]))
if "llama" in args.model.lower():
stop_token_ids.remove(self.tokenizer.unk_token_id)
outputs = self.model.generate(
**inputs,
do_sample=True, temperature=args.temperature, top_p=args.top_p,
max_new_tokens=max_tokens,
num_return_sequences=1,
eos_token_id=stop_token_ids
)
generation = self.tokenizer.decode(outputs[0][inputs['input_ids'].size(1):], skip_special_tokens=True)
return generation
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default=None, help="Path to the config file")
# Prompt file is a json file that contains the following fields:
# - instruction: the instruction, which will appear at the beginning of each demo and the test example
# - demo_sep: the separator between each demo, for example, "\n\n\n"
# - demo_prompt: the prompt for the demo, for example, "Instruction: {INST}\n\nQuestion: {Q}\n\n{D}\nAnswer: {A}"
# - {INST}: the instruction
# - {D}: the documents
# - {Q}: the question
# - {A}: the answers
# - doc_prompt, the prompt for each document, for example, "Document [{ID}](Title: {T}): {P}", where
# - {ID}: the document id, staring from 1
# - {T}: the document title
# - {P}: the document text
# - demos: a list of demo examples, each of which should have
# - question: the question
# - docs: the documents ("title" and "text")
# - answer: the answer to show in the demo. If it is a list, they will be concatenated by "\n". This is useful when the answer includes interactive components.
# Note that this python file will sample `--shot` demos from the prompt file given the random seed `--seed`
parser.add_argument("--prompt_file", type=str, help="Path to the prompt file")
# Evaluation file is a json file that contains a list of item, each of which contains
# - question: the question
# - answer: the answer
# - docs: the documents, each of which contains "title", "text"
parser.add_argument("--eval_file", type=str, help="Path to the eval file")
parser.add_argument("--quick_test", type=int, default=None, help="Quickly test a few examples")
# ICL setting
parser.add_argument("--ndoc", type=int, help="Number of documents")
parser.add_argument("--shot", type=int, help="Number of ICL demonstrations")
parser.add_argument("--seed", type=int, default=42, help="Seed for the random number generator")
parser.add_argument("--no_doc_in_demo", type=bool, default=False, help="Whether to remove the documents in the demos")
parser.add_argument("--fewer_doc_in_demo", type=bool, default=False, help="Whether to use fewer documents in the demos")
parser.add_argument("--ndoc_in_demo", type=int, default=None, help="When using --fewer_doc_in_demo, use this to designate how many docs in demo")
# Model and name
parser.add_argument("--dataset_name", type=str, help="Name of the dataset (for saving)")
parser.add_argument("--tag", type=str, help="Tag of run (for saving)")
parser.add_argument("--model", type=str, help="Model to use")
parser.add_argument("--openai_api", type=bool, default=False, help="Whether to use OpenAI API")
parser.add_argument("--azure", action="store_true", default=False, help="Azure openai API")
# Decoding
parser.add_argument("--temperature", type=float, default=0.5, help="Temperature for decoding")
parser.add_argument("--top_p", type=float, default=1.0, help="Nucleus sampling top-p")
parser.add_argument("--max_new_tokens", type=int, default=300, help="Max number of new tokens to generate in one step")
parser.add_argument("--max_length", type=int, default=2048, help="Max length the model can take. Should set properly wrt the model to avoid position overflow.")
parser.add_argument("--num_samples", type=int, default=1, help="Sample multiple answers.")
# Use summarization/extraction of the documents
parser.add_argument("--use_shorter", type=str, default=None, help="Whether to use summary data or extraction data for documents. Option: None, `summary`, `extraction`")
# Interactive
parser.add_argument("--interactive", type=bool, default=False, help="Whether to run in interactive mode")
parser.add_argument("--interactive_query", type=str, default=None, help="The query to use in interactive mode, either `doc_id` (corresponding to interact in paper) or `search` (corresponding to inlinesearch in paper).")
parser.add_argument("--retriever", type=str, default=None, help="When using interactive search mode, which retriever to use. Options: `tfidf`, `gtr-t5-large`")
parser.add_argument("--retriever_device", type=str, default="cuda", help="Where to put the dense retriever if using. Options: `cuda`, `cpu`")
parser.add_argument("--retrieve_in_all_docs", type=bool, default=False, help="Retrieve in all documents instead of just top ndoc")
parser.add_argument("--max_turn", type=int, default=10, help="Max number of all actions")
parser.add_argument("--max_doc_show", type=int, default=3, help="Max number of documents to show at one time.")
parser.add_argument("--force_cite_show", type=bool, default=False, help="Force citing the documents that are shown to the model")
# Load config
args = parser.parse_args()
config = yaml.safe_load(open(args.config)) if args.config is not None else {}
parser.set_defaults(**config)
args = parser.parse_args()
for k in args.__dict__:
print(f"{k}: {args.__dict__[k]}")
if "turbo" in args.model:
# ChatGPT has a longer max length
args.max_length = 4096
if "16k" in args.model:
args.max_length = 16384
elif "32k" in args.model:
args.max_length = 32768
elif "turbo" in args.model:
args.max_length = 4096
elif "gpt-4" in args.model:
args.max_length = 8192
elif "llama-2" in args.model.lower() or "llama2" in args.model.lower():
args.max_length = 4096
logger.info(f"Set the model max length to {args.max_length} (if not correct, check the code)")
# Load the model or setup the API
llm = LLM(args)
# Generate prompts
np.random.seed(args.seed)
# Load data
prompt_data = json.load(open(args.prompt_file))
eval_data = json.load(open(args.eval_file))
# Generate the demonstration part
head_prompt = ""
train_ids = np.random.choice(len(prompt_data["demos"]), args.shot, replace=False)
for train_id in train_ids:
train_item = prompt_data["demos"][train_id]
ndoc = args.ndoc
if args.no_doc_in_demo:
ndoc = 0
elif args.fewer_doc_in_demo:
assert args.ndoc_in_demo is not None
ndoc = args.ndoc_in_demo
head_prompt += make_demo(
train_item, prompt=prompt_data["demo_prompt"], ndoc=ndoc, doc_prompt=prompt_data["doc_prompt"],
instruction=prompt_data["instruction"], use_shorter=args.use_shorter
)
head_prompt += prompt_data["demo_sep"]
# Sample quick test
if args.quick_test is not None:
eval_ids = np.random.choice(len(eval_data), args.quick_test, replace=False)
eval_data = [eval_data[int(idx)] for idx in eval_ids]
logger.info("Generating prompts...")
incomplete_doc_list = 0 # For some questions there might be fewer than ndoc documents
for idx, eval_item in enumerate(tqdm(eval_data)):
eval_data[idx]['prompt'] = head_prompt + make_demo(
eval_item, prompt=prompt_data["demo_prompt"], ndoc=args.ndoc, doc_prompt=prompt_data["doc_prompt"],
instruction=prompt_data["instruction"], use_shorter=args.use_shorter,
test=True
)
doc_list = get_shorter_text(eval_item, eval_item["docs"], args.ndoc, args.use_shorter) if args.use_shorter is not None else eval_item["docs"][:args.ndoc]
if not args.retrieve_in_all_docs:
# If --retrieve_in_all_docs, we keep the original docs and do not trim them by ndoc
# Otherwise, take the new docs (truncated by ndoc and filtered if using summary/extraction)
eval_data[idx]['docs'] = doc_list
if len(doc_list) < args.ndoc:
incomplete_doc_list += 1
logger.info("Done.")
if incomplete_doc_list > 0:
logger.warning(f"There are {incomplete_doc_list} questions that have incomplete document list (may due to a lot of them are filtered out by summary/extraction).")
# Load retriever for interactive search
if args.interactive and args.interactive_query == "search" and "gtr" in args.retriever:
from sentence_transformers import SentenceTransformer
gtr_model = SentenceTransformer(f'sentence-transformers/{args.retriever}', device=args.retriever_device)
from searcher import SearcherWithinDocs
for idx, item in enumerate(tqdm(eval_data)):
prompt = item['prompt']
prompt_len = len(llm.tokenizer.tokenize(prompt))
if idx == 0:
print(prompt)
output_array = []
for _ in range(args.num_samples):
if args.interactive:
print("============ Interactive =============")
output_answer = ""
doc_list = item['docs']
interactive_prompt = prompt.rstrip() + "\n" # Start a new line
inline_doc = ""
num_turn = 0
doc_history = []
while True:
# For each action, it should end at the new line
# Three possible actions
# - Check: Document [1][2][3] / search query
# - Output: output
# - End
num_turn += 1
new_prompt = interactive_prompt + inline_doc
new_prompt_len = len(llm.tokenizer.tokenize(new_prompt))
if idx == 0:
print(f"-------------- Step {num_turn} prompt --------------")
print(new_prompt)
print("-----------------------------")
output = llm.generate(new_prompt, min(args.max_new_tokens, args.max_length-new_prompt_len), stop=["\n", "\n\n"])
if len(inline_doc) > 0:
output = "Output: " + output # "Output: " was included in inline_doc
inline_doc = "" # Delete inline_doc after use
interactive_prompt += output + "\n"
logger.info(f"Model output: \"{output}\"")
if output.strip().lower()[:3] == "end":
# Model decides to end the generation
break
elif "sorry" in output.lower() and ("relevant document" in output.lower() or "relevant information" in output.lower()) or "none of the documents" in output.lower():
# Instruction-tuned model may abstain from answer the question
break
elif output.strip().lower()[:5] == "check" or output.strip().lower()[:6] == "search":
# Checkout or search documents
if args.interactive_query == "search":
query = output.replace("Search:", "").replace("search:", "").strip()
if len(doc_list) == 0:
show_doc_ids = []
else:
searcher = SearcherWithinDocs(doc_list, args.retriever, model=gtr_model, device=args.retriever_device)
show_doc_ids = [int(searcher.search(query))]
elif args.interactive_query == "doc_id":
show_doc_ids = [int(r[1:])-1 for r in re.findall(r"\[\d+", output)] # In text citation id starts from 1
show_doc_ids = [doc_id for doc_id in show_doc_ids if doc_id < len(doc_list) and doc_id >= 0]
show_doc_ids = show_doc_ids[:args.max_doc_show] # Avoiding showing too many documents
else:
raise NotImplementedError
inline_doc = "".join([make_doc_prompt(doc_list[doc_id], doc_id, prompt_data["doc_prompt"]) for doc_id in show_doc_ids])
inline_doc += "Output:" # Force the model to generate output in the next step
doc_history.append(show_doc_ids)
elif output.strip().lower()[:6] == "output":
output = output.strip().replace("Output:", "").strip()
if args.force_cite_show:
output = remove_citations(output)
if len(doc_history) == 0:
logger.warn("No doc history??")
else:
# Just cite whatever documents the model has seen in the last step
if "qampari" in args.eval_file:
output = ", ".join(["".join([f"[{doc+1}]" for doc in doc_history[-1]]) + " " + entity.strip() for entity in output.rstrip().rstrip(",").split(",")]) + ", "
else:
output = " ".join(["".join([f"[{doc+1}]" for doc in doc_history[-1]]) + " " + o for o in sent_tokenize(output)]) + "."
output_answer += " " + output
else:
# Sometimes model starts to output random things.
break
if num_turn >= args.max_turn:
logger.warning("Reach maximum number of turns. Terminate now.")
break
if "qampari" in args.eval_file:
output_answer = output_answer.rstrip().rstrip(",")
output_array.append(output_answer)
item['prompt'] = interactive_prompt
item['doc_history'] = doc_history
else:
output_array.append(llm.generate(prompt, min(args.max_new_tokens, args.max_length-prompt_len)))
item['prompt'] = prompt
output_array[-1] = output_array[-1].replace("<|im_end|>", "").rstrip()
if output_array[-1].endswith("End."):
output_array[-1] = output_array[-1][:-len("End.")]
logger.info(f"Prompt length={prompt_len}")
logger.info(f"Question: {item['question']}")
logger.info(f"Gold answer: {item['answer']}")
logger.info(f"Final model output: {output_array[-1]}")
item['output'] = output_array if len(output_array) > 1 else output_array[0]
logger.info(f"#Cases when prompts exceed max length: {llm.prompt_exceed_max_length}")
logger.info(f"#Cases when max new tokens < 50: {llm.fewer_than_50}")
# Save the result
model_name = args.model
if "/" in model_name:
model_name = model_name.split("/")[-1]
name = f"{args.dataset_name}-{model_name}-{args.tag}-shot{args.shot}-ndoc{args.ndoc}-{args.seed}"
if args.azure:
name += "-azure"
if args.quick_test is not None:
name += f"-quick_test{args.quick_test}"
if args.no_doc_in_demo:
name += "-no_doc_in_demo"
if args.fewer_doc_in_demo:
name += f"-{args.ndoc_in_demo}_doc_in_demo"
if args.num_samples > 1:
name += f"-sample{args.num_samples}"
if args.force_cite_show:
name += f"-forceciteshow"
eval_data = {
"args": args.__dict__,
"data": eval_data,
}
if args.openai_api:
logger.info(f"Token used: prompt {llm.prompt_tokens}; completion {llm.completion_tokens}")
if "turbo" in args.model:
p_price, c_price = 0.0015, 0.002
if "16k" in args.model:
p_price, c_price = 0.003, 0.004
elif "gpt4" in args.model or "gpt-4" in args.model:
p_price, c_price = 0.03, 0.06
if "32k" in args.model:
p_price, c_price = 0.06, 0.12
else:
logger.warn("Cannot find model price")
p_price, c_price = 0, 0
eval_data["total_cost"] = llm.prompt_tokens / 1000 * p_price + llm.completion_tokens / 1000 * c_price
logger.info(f"Unit price (Oct 16, 2023, prompt/completion): {p_price}/{c_price}")
logger.info(f"Total cost: %.1f" % (eval_data["total_cost"]))
if args.azure:
eval_data["azure_filter_fail"] = llm.azure_filter_fail
if not os.path.exists("result"):
os.makedirs("result")
json.dump(eval_data, open("result/" + name + ".json", "w"), indent=4)
if __name__ == "__main__":
main()