-
Notifications
You must be signed in to change notification settings - Fork 3.3k
/
Copy pathGAN.py
152 lines (128 loc) · 6.28 KB
/
GAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import numpy as np
from skimage.io import imsave
import os
import shutil
img_width = 28
img_height = 28
img_size = img_height * img_width
to_train = True
to_restore = False
output_path = 'output'
#总迭代次数500次
max_epoch = 500
h1_size = 150
h2_size = 300
z_size = 100
batch_size = 256
def build_generator(z_prior):
w1 = tf.Variable(tf.truncated_normal([z_size,h1_size],stddev=0.1),name='g_w1',dtype=tf.float32)
b1 = tf.Variable(tf.zeros([h1_size]),name='g_b1',dtype=tf.float32)
h1 = tf.nn.relu(tf.matmul(z_prior,w1) + b1)
w2 = tf.Variable(tf.truncated_normal([h1_size,h2_size],stddev=0.1),name='g_w2',dtype=tf.float32)
b2 = tf.Variable(tf.zeros([h2_size]),name='g_b2',dtype=tf.float32)
h2 = tf.nn.relu(tf.matmul(h1,w2)+b2)
w3 = tf.Variable(tf.truncated_normal([h2_size,img_size],stddev=0.1),name='g_w3',dtype=tf.float32)
b3 = tf.Variable(tf.zeros([img_size]),name='g_b3',dtype=tf.float32)
h3 = tf.matmul(h2,w3)+b3
x_generate = tf.nn.tanh(h3)
g_params = [w1,b1,w2,b2,w3,b3]
return x_generate,g_params
def build_discriminator(x_data,x_generated,keep_prob):
#将real img 和 generated img拼在一起
x_in = tf.concat([x_data,x_generated],0)
w1 = tf.Variable(tf.truncated_normal([img_size,h2_size],stddev=0.1),name='d_w1',dtype=tf.float32)
b1 = tf.Variable(tf.zeros([h2_size]),name='d_b1',dtype=tf.float32)
h1 = tf.nn.dropout(tf.nn.relu(tf.matmul(x_in,w1)+b1),keep_prob)
w2 = tf.Variable(tf.truncated_normal([h2_size,h1_size],stddev=0.1),name='d_w2',dtype=tf.float32)
b2 = tf.Variable(tf.zeros([h1_size]),name='d_b2',dtype=tf.float32)
h2 = tf.nn.dropout(tf.nn.relu(tf.matmul(h1,w2)+b2),keep_prob)
w3 = tf.Variable(tf.truncated_normal([h1_size,1]),name='d_w3',dtype=tf.float32)
b3 = tf.Variable(tf.zeros([1]),name='d_b3',dtype=tf.float32)
h3 = tf.matmul(h2,w3)+b3
"""
1,函数原型 tf.slice(inputs,begin,size,name='')
2,用途:从inputs中抽取部分内容
inputs:可以是list,array,tensor
begin:n维列表,begin[i] 表示从inputs中第i维抽取数据时,相对0的起始偏移量,也就是从第i维的begin[i]开始抽取数据
size:n维列表,size[i]表示要抽取的第i维元素的数目
有几个关系式如下:
(1) i in [0,n]
(2)tf.shape(inputs)[0]=len(begin)=len(size)
(3)begin[i]>=0 抽取第i维元素的起始位置要大于等于0
(4)begin[i]+size[i]<=tf.shape(inputs)[i]
"""
"""
h3的size:[batch_size + batch_size,1]
所以 y_data 是对 real img的判别结果
y_generated 是对 generated img 的判别结果
"""
y_data = tf.nn.sigmoid(tf.slice(h3,[0,0],[batch_size,-1],name=None))
y_generated = tf.nn.sigmoid(tf.slice(h3,[batch_size,0],[-1,-1],name=None))
d_params = [w1,b1,w2,b2,w3,b3]
return y_data,y_generated,d_params
def show_result(batch_res,fname,grid_size=(0,0),grid_pad=5):
batch_res = 0.5 * batch_res.reshape((batch_res.shape[0], img_height, img_width)) + 0.5
img_h, img_w = batch_res.shape[1], batch_res.shape[2]
grid_h = img_h * grid_size[0] + grid_pad * (grid_size[0] - 1)
grid_w = img_w * grid_size[1] + grid_pad * (grid_size[1] - 1)
img_grid = np.zeros((grid_h, grid_w), dtype=np.uint8)
for i, res in enumerate(batch_res):
if i >= grid_size[0] * grid_size[1]:
break
img = (res) * 255
img = img.astype(np.uint8)
row = (i // grid_size[0]) * (img_h + grid_pad)
col = (i % grid_size[1]) * (img_w + grid_pad)
img_grid[row:row + img_h, col:col + img_w] = img
imsave(fname, img_grid)
def train():
# load data
mnist = input_data.read_data_sets('MNIST_data',one_hot=True)
x_data = tf.placeholder(tf.float32,[None,img_size],name='x_data')
z_prior = tf.placeholder(tf.float32,[None,z_size],name='z_prior')
keep_prob = tf.placeholder(tf.float32,name='keep_prob')
global_step = tf.Variable(0,name="global_step",trainable=False)
x_generated,g_params = build_generator(z_prior)
y_data,y_generated,d_params = build_discriminator(x_data,x_generated,keep_prob)
d_loss =-( tf.log(y_data) + tf.log(1-y_generated))
g_loss = -(tf.log(y_generated))
optimizer = tf.train.AdamOptimizer(0.0001)
d_trainer= optimizer.minimize(d_loss,var_list=d_params)
g_trainer = optimizer.minimize(g_loss,var_list=g_params)
init = tf.global_variables_initializer()
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(init)
if to_restore:
chkpt_fname = tf.train.latest_checkpoint(output_path)
saver.restore(sess, chkpt_fname)
else:
if os.path.exists(output_path):
shutil.rmtree(output_path)
os.mkdir(output_path)
z_sample_val = np.random.normal(0,1,size=(batch_size,z_size)).astype(np.float32)
steps = 60000 / batch_size
for i in range(sess.run(global_step),max_epoch):
for j in np.arange(steps):
print("epoch:%s, iter:%s" % (i, j))
# 每一步迭代,我们都会加载256个训练样本,然后执行一次train_step
x_value, _ = mnist.train.next_batch(batch_size)
x_value = 2 * x_value.astype(np.float32) - 1
z_value = np.random.normal(0, 1, size=(batch_size, z_size)).astype(np.float32)
# 执行生成
sess.run(d_trainer,
feed_dict={x_data: x_value, z_prior: z_value, keep_prob: 0.7})
# 执行判别
if j % 1 == 0:
sess.run(g_trainer,
feed_dict={x_data: x_value, z_prior: z_value, keep_prob: 0.7})
x_gen_val = sess.run(x_generated, feed_dict={z_prior: z_sample_val})
show_result(x_gen_val, "output/sample{0}.jpg".format(i))
z_random_sample_val = np.random.normal(0, 1, size=(batch_size, z_size)).astype(np.float32)
x_gen_val = sess.run(x_generated, feed_dict={z_prior: z_random_sample_val})
show_result(x_gen_val, "output/random_sample{0}.jpg".format(i))
sess.run(tf.assign(global_step, i + 1))
saver.save(sess, os.path.join(output_path, "model"), global_step=global_step)
train()