-
Notifications
You must be signed in to change notification settings - Fork 3.3k
/
Copy pathsave2file.py
35 lines (26 loc) · 1021 Bytes
/
save2file.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import tensorflow as tf
import numpy as np
# W = tf.Variable([[1,2,3],[3,4,5]],dtype=tf.float32,name='weights')
# b = tf.Variable([[1,2,3]],dtype=tf.float32,name='biases')
#
# init = tf.global_variables_initializer()
#
# saver = tf.train.Saver()
# """保存时, 首先要建立一个 tf.train.Saver() 用来保存, 提取变量.
# 再创建一个名为my_net的文件夹, 用这个 saver 来保存变量到这个目录
# "my_net/save_net.ckpt"."""
# with tf.Session() as sess:
# sess.run(init)
# save_path = saver.save(sess,"my_net/save_net.ckpt")
# print("Save to path:",save_path)
"""restore variable
redefine the same shape and same type for your variables
"""
W = tf.Variable(np.arange(6).reshape(2,3),name='weights',dtype=tf.float32)
b = tf.Variable(np.arange(3).reshape(1,3),name='biases',dtype=tf.float32)
# not need init step
saver = tf.train.Saver()
with tf.Session() as sess:
saver.restore(sess,"my_net/save_net.ckpt")
print("weights:",sess.run(W))
print("biases:",sess.run(b))