-
Notifications
You must be signed in to change notification settings - Fork 3.3k
/
Copy pathLSTM.py
75 lines (51 loc) · 2.27 KB
/
LSTM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data',one_hot=True)
lr= 0.001
training_iters = 1000000
batch_size = 128
n_inputs = 28
n_steps = 28
n_hidden_units = 128
n_classes = 10
xs = tf.placeholder(tf.float32,[None,n_inputs,n_steps])
ys = tf.placeholder(tf.float32,[None,10])
weights = {
'in':tf.Variable(tf.random_normal([n_inputs,n_hidden_units])),
'out':tf.Variable(tf.random_normal([n_hidden_units,n_classes]))
}
biases = {
'in':tf.Variable(tf.constant(0.1,shape=[n_hidden_units,])),
'out':tf.Variable(tf.constant(0.1,shape=[n_classes,]))
}
def RNN(X,weights,biases):
# hidden layer for input to cell
# X(128,28,28)
X = tf.reshape(X,[-1,n_inputs])
X_in = tf.matmul(X,weights['in']) + biases['in']
X_in = tf.reshape(X_in,[-1,n_steps,n_hidden_units])
lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(n_hidden_units,forget_bias=1.0,state_is_tuple=True)
#这里生成的state是tuple类型的,因为声明了state_is_tuple参数
init_state = lstm_cell.zero_state(batch_size,dtype=tf.float32)
#time_major指时间点是不是在主要的维度,因为我们的num_steps在次维,所以定义为了false
outputs,final_states = tf.nn.dynamic_rnn(lstm_cell,X_in,initial_state=init_state,time_major=False)
#final_states[1] 就是短时记忆h
results = tf.matmul(final_states[1],weights['out']) + biases['out']
return results
prediction = RNN(xs,weights,biases)
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction,labels=ys))
train_step = tf.train.AdamOptimizer(lr).minimize(cross_entropy)
correct_pred = tf.equal(tf.argmax(prediction,axis=1),tf.argmax(ys,axis=1))
accuracy = tf.reduce_mean(tf.cast(correct_pred,tf.float32))
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
step = 0
while step * batch_size < training_iters:
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
#一个step是一行
batch_xs = batch_xs.reshape([batch_size,n_steps,n_inputs])
sess.run(train_step,feed_dict={xs:batch_xs,ys:batch_ys})
if step % 20 == 0:
print(sess.run(accuracy, feed_dict={xs: batch_xs, ys: batch_ys}))
step = step + 1