-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathbase_cohort.R
155 lines (101 loc) · 4.36 KB
/
base_cohort.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
library(argparser)
library(assertthat)
library(rlang)
library(data.table)
library(vctrs)
library(ricu)
source("R/misc.R")
source("R/steps.R")
source("R/sequential.R")
source("R/obs_time.R")
# Create a parser
p <- arg_parser("Extract and preprocess ICU mortality data")
p <- add_argument(p, "--src", help="source database", default="mimic_demo")
argv <- parse_args(p)
src <- argv$src
conf <- ricu:::read_json("config.json")
path <- file.path(conf$output_dir, "base")
cncpt_env <- new.env()
# Task description
time_flow <- "sequential" # sequential / continuous
time_unit <- hours
freq <- 1L
max_len <- 7 * 24 # = 7 days
static_vars <- c("age", "sex", "ethnic", "adm", "los_icu", "los_hosp")
dynamic_vars <- c("alb", "alp", "alt", "ast", "be", "bicar", "bili", "bili_dir",
"bnd", "bun", "ca", "cai", "ck", "ckmb", "cl", "crea", "crp",
"dbp", "fgn", "fio2", "glu", "hgb", "hr", "inr_pt", "k", "lact",
"lymph", "map", "mch", "mchc", "mcv", "methb", "mg", "na", "neut",
"o2sat", "pco2", "ph", "phos", "plt", "po2", "ptt", "resp", "sbp",
"temp", "tnt", "urine", "wbc")
# cross-sectional vs longitudinal
predictor_type <- "dynamic" # static / dynamic
outcome_type <- NULL
patients <- stay_windows(src, interval = time_unit(freq))
patients <- as_win_tbl(patients, index_var = "start", dur_var = "end", interval = time_unit(freq))
# Define outcome ----------------------------------------------------------
# No outcome for the base cohort, which is meant to describe differences between
# databases.
# Define observation times ------------------------------------------------
stop_obs_at(patients, offset = ricu:::re_time(hours(max_len), time_unit(freq)), by_ref = TRUE)
# Apply exclusion criteria ------------------------------------------------
# 1. Invalid LoS
excl1 <- patients[end < 0, id_vars(patients), with = FALSE]
# 2. Stay <6h
x <- load_step("los_icu")
x <- filter_step(x, ~ . < 6 / 24)
excl2 <- unique(x[, id_vars(x), with = FALSE])
# 3. Less than 4 measurements
n_obs_per_row <- function(x, ...) {
# TODO: make sure this does not change by reference if a single concept is provided
obs <- data_vars(x)
x[, n := as.vector(rowSums(!is.na(.SD))), .SDcols = obs]
x[, .SD, .SDcols = !c(obs)]
}
x <- load_step(dict[dynamic_vars], interval=time_unit(freq), cache = TRUE)
x <- summary_step(x, "count", drop_index = TRUE)
x <- filter_step(x, ~ . < 4)
excl3 <- unique(x[, id_vars(x), with = FALSE])
# 4. More than 12 hour gaps between measurements
map_to_grid <- function(x) {
grid <- ricu::expand(patients)
merge(grid, x, all.x = TRUE)
}
longest_rle <- function(x, val) {
x <- x[, rle(.SD[[data_var(x)]]), by = c(id_vars(x))]
x <- x[values != val, lengths := 0]
x[, .(lengths = max(lengths)), , by = c(id_vars(x))]
}
x <- load_step(dict[dynamic_vars], interval=time_unit(freq), cache = TRUE)
x <- function_step(x, map_to_grid)
x <- function_step(x, n_obs_per_row)
x <- mutate_step(x, ~ . > 0)
x <- function_step(x, longest_rle, val = FALSE)
x <- filter_step(x, ~ . > as.numeric(ricu:::re_time(hours(12), time_unit(1)) / freq))
excl4 <- unique(x[, id_vars(x), with = FALSE])
# 5. Age < 18
x <- load_step("age")
x <- filter_step(x, ~ . < 18)
excl5 <- unique(x[, id_vars(x), with = FALSE])
# Apply exclusions
patients <- exclude(patients, mget(paste0("excl", 1:5)))
attrition <- as.data.table(patients[c("incl_n", "excl_n_total", "excl_n")])
patients <- patients[['incl']]
patient_ids <- patients[, .SD, .SDcols = id_var(patients)]
# Prepare data ------------------------------------------------------------
# Get predictors
dyn <- load_step(dict[dynamic_vars], interval=time_unit(freq), cache = TRUE)
sta <- load_step(dict[static_vars], cache = TRUE)
# Transform all variables into the target format
dyn_fmt <- function_step(dyn, map_to_grid)
rename_cols(dyn_fmt, c("stay_id", "time"), meta_vars(dyn_fmt), by_ref = TRUE)
sta_fmt <- sta[patient_ids] # TODO: make into step
rename_cols(sta_fmt, c("stay_id"), id_vars(sta), by_ref = TRUE)
# Write to disk -----------------------------------------------------------
out_path <- paste0(path, "/", src)
if (!dir.exists(out_path)) {
dir.create(out_path, recursive = TRUE)
}
arrow::write_parquet(dyn_fmt, paste0(out_path, "/dyn.parquet"))
arrow::write_parquet(sta_fmt, paste0(out_path, "/sta.parquet"))
fwrite(attrition, paste0(out_path, "/attrition.csv"))