-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathutils.py
948 lines (845 loc) · 33.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
# Copyright (c) 2022-2023.
# ProrokLab (https://www.proroklab.org/)
# All rights reserved.
import copy
import hashlib
import pickle
import platform
from enum import Enum
from pathlib import Path
from typing import Dict, Optional, Tuple, Set, Callable
from typing import Union
import ray
import torch
import vmas
import wandb
from ray.rllib import RolloutWorker, BaseEnv, Policy, VectorEnv
from ray.rllib.algorithms.callbacks import DefaultCallbacks
from ray.rllib.evaluation import Episode
from ray.rllib.models import ModelCatalog
from ray.rllib.utils.typing import PolicyID
from ray.tune import register_env
from torch import nn, Tensor
from vmas import make_env
from vmas.simulator.environment import Environment
from evaluate.distance_metrics import *
from evaluate.evaluate_model import TorchDiagGaussian
from models.fcnet import MyFullyConnectedNetwork
from models.gppo import GPPO
from rllib_differentiable_comms.multi_action_dist import (
TorchHomogeneousMultiActionDistribution,
)
from rllib_differentiable_comms.multi_trainer import MultiPPOTrainer
class PathUtils:
scratch_dir = (
Path("/Users/Matteo/scratch/")
if platform.system() == "Darwin"
else Path("/local/scratch/mb2389/")
)
gppo_dir = Path(__file__).parent.resolve()
result_dir = gppo_dir / "results"
rollout_storage = result_dir / "rollout_storage"
class InjectMode(Enum):
ACTION_NOISE = 1
OBS_NOISE = 2
SWITCH_AGENTS = 3
def is_noise(self):
if self is InjectMode.OBS_NOISE or self is InjectMode.ACTION_NOISE:
return True
return False
def is_obs(self):
if self is InjectMode.OBS_NOISE or self is InjectMode.SWITCH_AGENTS:
return True
return False
def is_action(self):
if self is InjectMode.ACTION_NOISE or self is InjectMode.SWITCH_AGENTS:
return True
return False
class TrainingUtils:
@staticmethod
def init_ray(scenario_name: str, local_mode: bool = False):
if not ray.is_initialized():
ray.init(
_temp_dir=str(PathUtils.scratch_dir / "ray"),
local_mode=local_mode,
)
print("Ray init!")
register_env(scenario_name, lambda config: TrainingUtils.env_creator(config))
ModelCatalog.register_custom_model("GPPO", GPPO)
ModelCatalog.register_custom_model(
"MyFullyConnectedNetwork", MyFullyConnectedNetwork
)
ModelCatalog.register_custom_action_dist(
"hom_multi_action", TorchHomogeneousMultiActionDistribution
)
@staticmethod
def env_creator(config: Dict):
env = make_env(
scenario=config["scenario_name"],
num_envs=config["num_envs"],
device=config["device"],
continuous_actions=config["continuous_actions"],
wrapper=vmas.Wrapper.RLLIB,
max_steps=config["max_steps"],
# Scenario specific
**config["scenario_config"],
)
return env
class EvaluationCallbacks(DefaultCallbacks):
def on_episode_step(
self,
*,
worker: RolloutWorker,
base_env: BaseEnv,
episode: Episode,
**kwargs,
):
info = episode.last_info_for()
for a_key in info.keys():
for b_key in info[a_key]:
try:
episode.user_data[f"{a_key}/{b_key}"].append(info[a_key][b_key])
except KeyError:
episode.user_data[f"{a_key}/{b_key}"] = [info[a_key][b_key]]
def on_episode_end(
self,
*,
worker: RolloutWorker,
base_env: BaseEnv,
policies: Dict[str, Policy],
episode: Episode,
**kwargs,
):
info = episode.last_info_for()
for a_key in info.keys():
for b_key in info[a_key]:
metric = np.array(episode.user_data[f"{a_key}/{b_key}"])
episode.custom_metrics[f"{a_key}/{b_key}"] = np.sum(metric).item()
class RenderingCallbacks(DefaultCallbacks):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.frames = []
def on_episode_step(
self,
*,
worker: RolloutWorker,
base_env: BaseEnv,
policies: Optional[Dict[PolicyID, Policy]] = None,
episode: Episode,
**kwargs,
) -> None:
self.frames.append(
base_env.vector_env.try_render_at(
mode="rgb_array", agent_index_focus=None
)
)
def on_episode_end(
self,
*,
worker: RolloutWorker,
base_env: BaseEnv,
policies: Dict[PolicyID, Policy],
episode: Episode,
**kwargs,
) -> None:
vid = np.transpose(self.frames, (0, 3, 1, 2))
episode.media["rendering"] = wandb.Video(
vid, fps=1 / base_env.vector_env.env.world.dt, format="mp4"
)
self.frames = []
class HeterogeneityMeasureCallbacks(DefaultCallbacks):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.policy = None
self.all_obs = []
self.all_act = []
def reset(self):
self.all_obs = []
self.all_act = []
def on_episode_step(
self,
*,
worker: RolloutWorker,
base_env: BaseEnv,
policies: Optional[Dict[PolicyID, Policy]] = None,
episode: Episode,
**kwargs,
) -> None:
obs = episode.last_raw_obs_for()
act = episode.last_action_for()
info = episode.last_info_for()
reward = episode.last_reward_for()
for i, agent_obs in enumerate(obs):
obs[i] = torch.tensor(obs[i]).unsqueeze(0)
# self.all_act.append(
# torch.chunk(torch.tensor(act), base_env.vector_env.env.n_agents)
# )
self.all_obs.append(obs)
def on_episode_end(
self,
*,
worker: RolloutWorker,
base_env: BaseEnv,
policies: Dict[PolicyID, Policy],
episode: Episode,
**kwargs,
) -> None:
self.env: Environment = base_env.vector_env.env
self.n_agents = self.env.n_agents
self.input_lens = [
2 * self.env.get_agent_action_size(agent) for agent in self.env.agents
]
self.policy = policies["default_policy"]
self.model = self.policy.model
self.model_state_dict = self.model.state_dict()
self.temp_model_i = copy.deepcopy(self.model)
self.temp_model_j = copy.deepcopy(self.model)
self.temp_model_i.eval()
self.temp_model_j.eval()
dists = torch.full(
(
len(self.all_obs),
int((self.n_agents * (self.n_agents - 1)) / 2),
self.n_agents,
self.env.get_agent_action_size(self.env.agents[0]),
),
-1.0,
dtype=torch.float,
)
# num_obs,
# number of unique pairs,
# number of spots within an observation where I can evaluate the agents,
# number of actions per agent
all_measures = {
"wasserstein": dists,
"kl": dists.clone(),
"kl_sym": dists.clone(),
"hellinger": dists.clone(),
"bhattacharyya": dists.clone(),
"balch": dists.clone(),
}
# self.all_act = self.all_act[1:] + self.all_act[:1]
pair_index = 0
for i in range(self.n_agents):
for j in range(self.n_agents):
if j <= i:
continue
# Line run for all pairs
for agent_index in range(self.n_agents):
self.temp_model_i.load_state_dict(self.model_state_dict)
self.temp_model_j.load_state_dict(self.model_state_dict)
try:
model = self.model.gnn
temp_model_i = self.temp_model_i.gnn
temp_model_j = self.temp_model_j.gnn
except AttributeError:
model = self.model
temp_model_i = self.temp_model_i
temp_model_j = self.temp_model_j
for temp_layer_i, temp_layer_j, layer in zip(
temp_model_i.children(),
temp_model_j.children(),
model.children(),
):
assert isinstance(layer, nn.ModuleList)
if len(list(layer.children())) > 1:
assert len(list(layer.children())) == self.n_agents
self.load_agent_x_in_pos_y(
temp_layer_i, layer, x=i, y=agent_index
)
self.load_agent_x_in_pos_y(
temp_layer_j, layer, x=j, y=agent_index
)
for obs_index, obs in enumerate(self.all_obs):
return_dict = self.compute_distance(
temp_model_i=self.temp_model_i,
temp_model_j=self.temp_model_j,
obs=obs,
agent_index=agent_index,
i=i,
j=j,
act=None,
check_act=False, # not obs_index == dists.shape[0] - 1,
)
for key, value in all_measures.items():
assert (
all_measures[key][
obs_index, pair_index, agent_index
].shape
== return_dict[key].shape
)
all_measures[key][
obs_index, pair_index, agent_index
] = return_dict[key]
pair_index += 1
all_measures_agent_matrix = self.get_distance_matrix(all_measures)
self.upload_per_agent_contribution(all_measures_agent_matrix, episode)
self.compute_hierarchical_social_entropy(all_measures_agent_matrix, episode)
for key, value in all_measures.items():
assert not (value < 0).any(), f"{key}_{value}"
episode.custom_metrics[f"mine/{key}"] = value.mean().item()
self.reset()
def get_distance_matrix(
self, all_measures: Dict[str, Tensor]
) -> Dict[str, Tensor]:
all_measures_agent_matrix = {}
for key, dists in all_measures.items():
per_agent_distances = torch.full(
(self.n_agents, self.n_agents),
-1.0,
dtype=torch.float32,
)
per_agent_distances.diagonal()[:] = 0
pair_index = 0
for i in range(self.n_agents):
for j in range(self.n_agents):
if j <= i:
continue
pair_distance = dists[:, pair_index].mean()
per_agent_distances[i][j] = pair_distance
per_agent_distances[j][i] = pair_distance
pair_index += 1
assert not (per_agent_distances < 0).any()
all_measures_agent_matrix[key] = per_agent_distances
return all_measures_agent_matrix
def upload_per_agent_contribution(self, all_measures_agent_matrix, episode):
for key, agent_matrix in all_measures_agent_matrix.items():
for i in range(self.n_agents):
episode.custom_metrics[f"{key}/agent_{i}"] = agent_matrix[
i
].sum().item() / (self.n_agents - 1)
for j in range(self.n_agents):
if j <= i:
continue
episode.custom_metrics[f"{key}/agent_{i}{j}"] = agent_matrix[
i, j
].item()
def compute_hierarchical_social_entropy(
self, all_measures_agent_matrix, episode
):
for metric_name, agent_matrix in all_measures_agent_matrix.items():
distances = []
for i in range(self.n_agents):
for j in range(self.n_agents):
if j <= i:
continue
distances.append(({i, j}, agent_matrix[i, j].item()))
distances.sort(key=lambda e: e[1])
intervals = []
saved = 0
for i in range(len(distances)):
intervals.append(distances[i][1] - saved)
saved = distances[i][1]
hierarchical_social_ent = 0.0
hs = [0.0] + [dist[1] for dist in distances[:-1]]
for interval, h in zip(intervals, hs):
hierarchical_social_ent += interval * self.compute_social_entropy(
h, agent_matrix
)
assert hierarchical_social_ent >= 0
episode.custom_metrics[f"hse/{metric_name}"] = hierarchical_social_ent
def compute_social_entropy(self, h, agent_matrix):
clusters = self.cluster(h, agent_matrix)
total_elements = np.array([len(cluster) for cluster in clusters]).sum()
ps = [len(cluster) / total_elements for cluster in clusters]
social_entropy = -np.array([p * np.log2(p) for p in ps]).sum()
return social_entropy
def cluster(self, h, agent_matrix):
# Diametric clustering
clusters = [{i} for i in range(self.n_agents)]
for i, cluster in enumerate(clusters):
for j in range(self.n_agents):
if i == j:
continue
can_add = True
for k in cluster:
if agent_matrix[k, j].item() > h:
can_add = False
break
if can_add:
cluster.add(j)
# Remove duplicate clusters
clusters = [set(item) for item in set(frozenset(item) for item in clusters)]
# Remove subsets (should not be used)
final_clusters = copy.deepcopy(clusters)
for i, c1 in enumerate(clusters):
for j, c2 in enumerate(clusters):
if i != j and c1.issuperset(c2) and c2 in final_clusters:
final_clusters.remove(c2)
assert final_clusters == clusters, "Superset check should be useless"
return final_clusters
def load_agent_x_in_pos_y(self, temp_model, model, x, y):
temp_model[y].load_state_dict(model[x].state_dict())
return temp_model
def compute_distance(
self,
temp_model_i,
temp_model_j,
obs,
agent_index,
i,
j,
act,
check_act,
):
input_dict = {"obs": obs}
logits_i = temp_model_i(input_dict)[0].detach()
logits_j = temp_model_j(input_dict)[0].detach()
split_inputs_i = torch.split(logits_i, self.input_lens, dim=1)
split_inputs_j = torch.split(logits_j, self.input_lens, dim=1)
distr_i = TorchDiagGaussian(
split_inputs_i[agent_index], self.env.agents[agent_index].u_range
)
distr_j = TorchDiagGaussian(
split_inputs_j[agent_index], self.env.agents[agent_index].u_range
)
mean_i = distr_i.dist.mean
mean_j = distr_j.dist.mean
# Check
i_is_loaded_in_its_pos = agent_index == i
j_is_loaded_in_its_pos = agent_index == j
assert i != j
if check_act:
act = act[agent_index]
if i_is_loaded_in_its_pos:
assert (act == mean_i).all()
elif j_is_loaded_in_its_pos:
assert (act == mean_j).all()
var_i = distr_i.dist.variance
var_j = distr_i.dist.variance
return_value = {}
for name, distance in zip(
["wasserstein", "kl", "kl_sym", "hellinger", "bhattacharyya", "balch"],
[
wasserstein_distance,
kl_divergence,
kl_symmetric,
hellinger_distance,
bhattacharyya_distance,
balch,
],
):
distances = []
for k in range(self.env.get_agent_action_size(self.env.agents[0])):
distances.append(
torch.tensor(
distance(
mean_i[..., k].numpy(),
var_i[..., k].unsqueeze(-1).numpy(),
mean_j[..., k].numpy(),
var_j[..., k].unsqueeze(-1).numpy(),
)
)
)
assert (
distances[k] >= 0
).all(), f"{name}, [{distances[k]} with mean_i {mean_i[..., k]} var_i {var_i[...,k]}, mean_j {mean_j[..., k]} var_j {var_j[...,k]}"
return_value[name] = torch.stack(distances)
return return_value
class EvaluationUtils:
# Resilience injection utils
@staticmethod
def __inject_noise_in_action(
agent_actions: tuple,
agent_indices: Set[int],
noise_delta: float,
env: VectorEnv,
) -> Tuple:
assert len(agent_indices) <= len(agent_actions)
agent_actions_new = list(agent_actions)
for agent_index in agent_indices:
noise = np.random.uniform(
-noise_delta, noise_delta, size=agent_actions_new[agent_index].shape
)
agent_actions_new[agent_index] += noise
agent_actions_new[agent_index] = np.clip(
agent_actions_new[agent_index],
-env.env.agents[agent_index].u_range,
env.env.agents[agent_index].u_range,
)
return tuple(agent_actions_new)
@staticmethod
def __inject_noise_in_observation(
observations: tuple,
agent_indices: Set[int],
noise_delta: float,
) -> Tuple:
assert len(agent_indices) <= len(observations)
observations_new = list(observations)
for agent_index in agent_indices:
noise = np.random.uniform(
-noise_delta, noise_delta, size=observations_new[agent_index].shape
)
observations_new[agent_index] += noise
return tuple(observations_new)
@staticmethod
def __switch_agents(
angents_io: tuple,
agent_indices: Set[int],
) -> Tuple:
assert len(agent_indices) <= len(angents_io)
assert len(agent_indices) == 2
agent_indices = list(agent_indices)
agents_io_new = list(angents_io)
agents_io_new[agent_indices[0]] = angents_io[agent_indices[1]]
agents_io_new[agent_indices[1]] = angents_io[agent_indices[0]]
return tuple(agents_io_new)
@staticmethod
def get_inject_function(
inject_mode: InjectMode,
noise_delta: float,
agents_to_inject: Set,
env: VectorEnv,
):
def inject_function(x):
if inject_mode is InjectMode.ACTION_NOISE:
return EvaluationUtils.__inject_noise_in_action(
x, agent_indices=agents_to_inject, noise_delta=noise_delta, env=env
)
elif inject_mode is InjectMode.OBS_NOISE:
return EvaluationUtils.__inject_noise_in_observation(
x, noise_delta=noise_delta, agent_indices=agents_to_inject
)
elif inject_mode is InjectMode.SWITCH_AGENTS:
assert noise_delta == 0
return EvaluationUtils.__switch_agents(
x, agent_indices=agents_to_inject
)
else:
assert False
return inject_function
@staticmethod
def get_checkpoint_config(checkpoint_path: Union[str, Path]):
params_path = Path(checkpoint_path).parent / "params.pkl"
with open(params_path, "rb") as f:
config = pickle.load(f)
return config
@staticmethod
def get_config_trainer_and_env_from_checkpoint(
checkpoint_path: Union[str, Path],
for_evaluation: bool = True,
config_update_fn: Callable[[Dict], Dict] = None,
):
config = EvaluationUtils.get_checkpoint_config(checkpoint_path)
scenario_name = config["env"]
TrainingUtils.init_ray(scenario_name=scenario_name)
if for_evaluation:
# Env
env_config = config["env_config"]
env_config.update({"num_envs": 1})
# Scenario
# env_config["scenario_config"].update({"mass_position": 0.75})
# Eval
eval_config = config["evaluation_config"]
eval_config.update({"callbacks": None})
config_update = {
"in_evaluation": True,
"num_workers": 0,
"num_gpus": 0,
"num_envs_per_worker": 1,
"callbacks": None,
"env_config": env_config,
"evaluation_config": eval_config
# "explore": False,
}
config.update(config_update)
if config_update_fn is not None:
config = config_update_fn(config)
print(f"\nConfig: {config}")
trainer = MultiPPOTrainer(env=scenario_name, config=config)
trainer.restore(str(checkpoint_path))
trainer.start_config = config
env = TrainingUtils.env_creator(config["env_config"])
env.seed(config["seed"])
return config, trainer, env
@staticmethod
def rollout_episodes(
n_episodes: int,
render: bool,
get_obs: bool,
get_actions: bool,
trainer: MultiPPOTrainer,
env: VectorEnv,
inject: bool,
inject_mode: InjectMode,
agents_to_inject: Set,
noise_delta: float,
action_callback=None,
use_pickle: bool = True,
):
assert (trainer is None) != (action_callback is None)
if trainer is not None:
print(
f"\nLoaded: {EvaluationUtils.get_model_name(trainer.config)[0]}, {EvaluationUtils.get_model_name(trainer.config)[2]}"
)
if inject:
print(
f"Injected: {EvaluationUtils.get_inject_name(inject_mode=inject_mode, agents_to_inject=agents_to_inject, noise_delta=noise_delta)[0]}"
)
inject_function = EvaluationUtils.get_inject_function(
inject_mode,
agents_to_inject=agents_to_inject,
noise_delta=noise_delta,
env=env,
)
best_gif = None
rewards = []
observations = []
actions = []
if use_pickle and trainer:
(
rewards,
best_gif,
observations,
actions,
) = EvaluationUtils.__get_pickled_rollout(
render,
get_obs,
get_actions,
trainer,
inject,
inject_mode,
agents_to_inject,
noise_delta,
)
(rewards, observations, actions) = EvaluationUtils.__crop_rollout(
rewards, observations, actions, get_obs, get_actions, n_episodes
)
print(f"Loaded from pickle {len(rewards)} episodes!")
best_reward = max(rewards, default=float("-inf"))
for j in range(len(rewards), n_episodes):
env.seed(j)
frame_list = []
observations_this_episode = []
actions_this_episode = []
reward_sum = 0
observation = env.vector_reset()[0]
i = 0
done = False
if render:
frame_list.append(
env.try_render_at(mode="rgb_array", visualize_when_rgb=True)
)
while not done:
i += 1
if inject and inject_mode.is_obs():
observation = inject_function(observation)
if get_obs:
observations_this_episode.append(observation)
if trainer is not None:
action = trainer.compute_single_action(observation)
else:
action = action_callback(observation)
if inject and inject_mode.is_action():
action = inject_function(action)
if get_actions:
actions_this_episode.append(action)
obss, rews, ds, infos = env.vector_step([action])
observation = obss[0]
reward = rews[0]
done = ds[0]
info = infos[0]
reward_sum += reward
if render:
frame_list.append(
env.try_render_at(mode="rgb_array", visualize_when_rgb=True)
)
print(f"Episode: {j + 1}, total reward: {reward_sum}")
rewards.append(reward_sum)
if reward_sum > best_reward and render:
best_reward = reward_sum
best_gif = frame_list.copy()
if get_obs:
observations.append(observations_this_episode)
if get_actions:
actions.append(actions_this_episode)
print(
f"Max reward: {np.max(rewards)}\nReward mean: {np.mean(rewards)}\nMin reward: {np.min(rewards)}"
)
if use_pickle and trainer:
EvaluationUtils.__store_pickled_rollout(
rewards,
best_gif,
observations,
actions,
trainer,
inject,
inject_mode,
agents_to_inject,
noise_delta,
)
assert len(rewards) == n_episodes
if get_obs:
assert len(observations) == n_episodes
if get_actions:
assert len(actions) == n_episodes
if render:
assert best_gif
return (
rewards,
best_gif,
observations,
actions,
)
@staticmethod
def __crop_rollout(
rewards,
observations,
actions,
get_obs: bool,
get_actions: bool,
n_episodes: int,
):
min_len = min(len(rewards), n_episodes)
if get_actions:
min_len = min(len(actions), min_len)
if get_obs:
min_len = min(len(observations), min_len)
return (
rewards[:min_len],
observations[:min_len] if get_obs else observations,
actions[:min_len] if get_actions else actions,
)
@staticmethod
def __store_pickled_rollout(
rewards,
best_gif,
observations,
actions,
trainer: MultiPPOTrainer,
inject: bool,
inject_mode: InjectMode,
agents_to_inject: Set,
noise_delta: float,
):
(
_,
model_name,
_,
env_name,
) = EvaluationUtils.get_model_name(trainer.config)
_, inject_name = EvaluationUtils.get_inject_name(
agents_to_inject=agents_to_inject,
noise_delta=noise_delta,
inject_mode=inject_mode,
)
hash = hashlib.sha256()
hash.update(bytes(str(trainer.start_config), "UTF-8"))
name = (
f"{model_name}_{env_name}"
+ ("_" + inject_name if inject else "")
+ f"_{hash.hexdigest()}"
)
reward_file = PathUtils.rollout_storage / f"rew_{name}.pkl"
best_gif_file = PathUtils.rollout_storage / f"gif_{name}.pkl"
observations_file = PathUtils.rollout_storage / f"obs_{name}.pkl"
actions_file = PathUtils.rollout_storage / f"acts_{name}.pkl"
(
rewards_loaded,
best_gif_loaded,
observations_loaded,
actions_loaded,
) = EvaluationUtils.__get_pickled_rollout(
best_gif is not None,
len(observations) > 0,
len(actions) > 0,
trainer,
inject,
inject_mode,
agents_to_inject,
noise_delta,
)
if len(rewards) > len(rewards_loaded):
pickle.dump(rewards, open(reward_file, "wb"))
if (
best_gif is not None
and (best_gif_loaded is None or len(rewards_loaded) < len(rewards))
and False
):
pickle.dump(best_gif, open(best_gif_file, "wb"))
if len(observations) > len(observations_loaded):
pickle.dump(observations, open(observations_file, "wb"))
if len(actions) > len(actions_loaded):
pickle.dump(actions, open(actions_file, "wb"))
@staticmethod
def __get_pickled_rollout(
render: bool,
get_obs: bool,
get_actions: bool,
trainer: MultiPPOTrainer,
inject: bool,
inject_mode: InjectMode,
agents_to_inject: Set,
noise_delta: float,
):
(
_,
model_name,
_,
env_name,
) = EvaluationUtils.get_model_name(trainer.config)
_, inject_name = EvaluationUtils.get_inject_name(
agents_to_inject=agents_to_inject,
noise_delta=noise_delta,
inject_mode=inject_mode,
)
hash = hashlib.sha256()
hash.update(bytes(str(trainer.start_config), "UTF-8"))
name = (
f"{model_name}_{env_name}"
+ ("_" + inject_name if inject else "")
+ f"_{hash.hexdigest()}"
)
reward_file = PathUtils.rollout_storage / f"rew_{name}.pkl"
best_gif_file = PathUtils.rollout_storage / f"gif_{name}.pkl"
observations_file = PathUtils.rollout_storage / f"obs_{name}.pkl"
actions_file = PathUtils.rollout_storage / f"acts_{name}.pkl"
best_gif = None
rewards = []
observations = []
actions = []
if reward_file.is_file():
rewards = pickle.load(open(reward_file, "rb"))
if render and best_gif_file.is_file():
best_gif = pickle.load(open(best_gif_file, "rb"))
if get_obs and observations_file.is_file():
observations = pickle.load(open(observations_file, "rb"))
if get_actions and actions_file.is_file():
actions = pickle.load(open(actions_file, "rb"))
return rewards, best_gif, observations, actions
@staticmethod
def get_model_name(config):
# Model
is_hetero = config["model"]["custom_model_config"]["heterogeneous"]
is_gippo = config["model"]["custom_model_config"]["share_observations"]
# Env
env_config = config["env_config"]
scenario_name = env_config["scenario_name"]
model_title = f"{'Het' if is_hetero else ''}{'GPPO' if is_gippo else 'IPPO'}"
model_name = model_title.lower().replace(" ", "_")
env_title = scenario_name
env_name = scenario_name.lower().replace(" ", "_")
return model_title, model_name, env_title, env_name
@staticmethod
def get_inject_name(
agents_to_inject: Set, inject_mode: InjectMode, noise_delta: float
):
if agents_to_inject is not None and len(agents_to_inject) > 0:
noise_title = (
f"Agents injected: {agents_to_inject}, Inject mode: {inject_mode.name}"
+ (
" ($\\pm{}$ uniform noise)".format(noise_delta)
if inject_mode.is_noise()
else ""
)
)
noise_name = (
f"agents_injected_{agents_to_inject}_inject_mode_{inject_mode.name}"
+ (
"_{}_delta_noise".format(noise_delta)
if inject_mode.is_noise()
else ""
)
)
return noise_title, noise_name
return "", ""