-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathptrnet_bert.py
707 lines (623 loc) · 33.9 KB
/
ptrnet_bert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
import argparse
import random, os, csv, logging, json, copy, math, operator, copy, subprocess
from queue import PriorityQueue
from typing import Optional
from dataclasses import dataclass
import numpy as np
from seqeval.metrics import f1_score, precision_score, recall_score
from tqdm.auto import tqdm, trange
import torch
import torch.nn.functional as F
from torch.autograd import Variable
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
TensorDataset, Sampler)
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers import (BertTokenizer, RobertaTokenizer, XLMRobertaTokenizer,
BartTokenizer, MBart50Tokenizer, T5Tokenizer, MT5Tokenizer, AutoTokenizer,
BertConfig, RobertaConfig, XLMRobertaConfig,
BartConfig, MBartConfig, T5Config, MT5Config, AutoConfig,
AdamW, Adafactor, get_linear_schedule_with_warmup)
from src.data import create_sampler_dataloader
# from src.data import create_sampler_dataloader, DataProcessor, semParse_convert_examples_to_features, spider_convert_examples_to_features, BucketSampler
from src.ptrbert import PtrRoberta, PtrBART, PtrT5
from evaluate import get_exact_match
import wandb
random.seed(42)
np.random.seed(42)
torch.manual_seed(42)
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logger = logging.getLogger(__name__)
SUPPORT_MODELS = ["xlm-roberta-large", "bert-base-multilingual-cased"]
def read_output_vocab(tokenizer, output_vocab_f, dataset):
# TODO: This function is very important. Change this will probably cause model not to work.
# if not tokenizer.cls_token:
# tokenizer.cls_token = '[cls]'
# if not tokenizer.sep_token:
# tokenizer.sep_token = '[sep]'
if not tokenizer.cls_token:
tokenizer.cls_token = tokenizer.pad_token
if not tokenizer.sep_token:
tokenizer.sep_token = tokenizer.eos_token
if dataset == 'MTOP':
vocab = [tokenizer.pad_token, tokenizer.cls_token, tokenizer.sep_token, ']']
elif dataset == 'TOP':
vocab = [tokenizer.pad_token, tokenizer.cls_token, tokenizer.sep_token]
elif dataset in ['MGEOQUERY', 'MSPIDER', 'MFREE917', 'MCWQ', 'MATIS', 'MSCHEMA2QA', 'MNLMAPS', 'MOVERNIGHT']:
vocab = [tokenizer.pad_token, tokenizer.cls_token, tokenizer.sep_token]
else:
print('unknown dataset', dataset)
exit()
slot_vocab = []
intent_vocab = []
ptr_vocab = []
all_output = []
num_ptr = 0
num_slot = 0
num_intent = 0
with open(output_vocab_f) as f:
for line in f:
token = line.strip()
if dataset in ['MTOP', 'TOP']:
if 'SL:' in token:
num_slot += 1
slot_vocab.append(token)
elif 'IN:' in token:
num_intent += 1
intent_vocab.append(token)
elif '@ptr' in token:
num_ptr += 1
ptr_vocab.append(token)
else:
assert(dataset == 'MTOP')
num_slot += 1
# vocab.append(token)
elif dataset in ['MGEOQUERY', 'MSPIDER', 'MFREE917', 'MCWQ', 'MATIS', 'MSCHEMA2QA', 'MNLMAPS', 'MOVERNIGHT']:
if '@ptr' in token:
num_ptr += 1
ptr_vocab.append(token)
else:
vocab.append(token)
vocab = vocab + slot_vocab + intent_vocab
all_output = vocab + ptr_vocab
return vocab, all_output, num_ptr, num_slot, num_intent
def save_model(model, tokenizer, output_dir):
# Save a trained model and the associated configuration
# output_dir = os.path.join(output_dir, 'epoch{}'.format(epoch))
# os.makedirs(output_dir)
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
model_to_save.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
# json.dump(model_config, open(os.path.join(output_dir, "model_config.json"), "w"))
return
def evaluate(model, examples, eval_sampler, eval_dataloader, id2token, device, n_gpu, output_f, decode=False, output_json=None, use_decode_emb=False):
eval_loss, nb_eval_steps, nb_eval_examples = 0, 0, 0
# eval_slot_accuracy, eval_intent_accuracy = 0, 0
# y_slot_true = []
# y_slot_pred = []
# y_intent_true = []
# y_intent_pred = []
exact_matches = []
# y_intent_pred_first = []
# y_intent_true_first = []
f = open(output_f, 'w')
cnt_ex = 0
if output_json:
f_out = open(output_json, 'w')
for idx, i in enumerate(eval_sampler):
logger.info("{}/{}: {}".format(idx, len(eval_sampler), len(i)))
batch = eval_dataloader.dataset[i]
batch = tuple(t.to(device) for t in batch)
with torch.no_grad():
if len(batch) == 11:
input_ids, attention_mask, source_mask, token_type_ids, output_ids, \
output_ids_y, target_mask, output_mask, ntokens, input_length, output_length = batch
outputs = model(input_ids=batch[0], attention_mask=batch[1], source_mask=batch[2],
token_type_ids=batch[3], output_ids=batch[4],
output_ids_y=batch[5], target_mask=batch[6], output_mask=batch[7], ntokens=batch[8],
input_length=batch[9], output_length=batch[10], decode=decode)
else:
input_ids, attention_mask, source_mask, token_type_ids, output_ids, \
output_ids_y, target_mask, output_mask, ntokens, input_length, output_length, input_token_length, span_indices, span_indices_mask, pointer_mask, schema_token_mask = batch
outputs = model(input_ids=batch[0], attention_mask=batch[1], source_mask=batch[2],
token_type_ids=batch[3], output_ids=batch[4],
output_ids_y=batch[5], target_mask=batch[6], output_mask=batch[7], ntokens=batch[8],
input_length=batch[9], output_length=batch[10], decode=decode,
input_token_length=batch[11],
span_indices=batch[12], span_indices_mask=batch[13],
pointer_mask=batch[14], schema_token_mask=batch[15])
if decode:
tmp_eval_loss, pred_ids = outputs
else:
tmp_eval_loss = outputs
if n_gpu > 1:
tmp_eval_loss = tmp_eval_loss.mean()
eval_loss += tmp_eval_loss.item()
nb_eval_steps += 1
if decode:
if use_decode_emb:
output_ids = output_ids
else:
start_symbol = 1
output_ids = torch.cat([
torch.zeros(output_ids_y.size(0), 1, dtype=output_ids_y.dtype).fill_(start_symbol).to(output_ids_y.device),
output_ids_y], axis=1)
# y_slot_p, y_slot_t = get_slots_info(output_ids, pred_ids, num_slots)
# y_intent_p, y_intent_t, em, y_intent_p_first, y_intent_t_first = get_intent_n_exact_match_info(output_ids, pred_ids, num_slots, num_intents)
# y_slot_pred += y_slot_p
# y_slot_true += y_slot_t
# y_intent_pred += y_intent_p
# y_intent_true += y_intent_t
exact_matches += get_exact_match(output_ids, pred_ids)
# y_intent_pred_first += y_intent_p_first
# y_intent_true_first += y_intent_t_first
for ii in range(output_ids.size(0)):
example = examples[cnt_ex]
tokens = example.text_inp.split(" ")
output_token = []
output_token_surface = []
for output_id in output_ids[ii]:
if output_id.item() in [0,1,2]:
continue
token = id2token[output_id.item()]
output_token.append(token)
if '@ptr' in token:
ptr_id = min(int(token[4:]), len(tokens) - 2)
# sometimes the generated number is larger than seq length.
# Thus, we constrain the input not exceeding the limit
output_token_surface.append(tokens[ptr_id])
else:
output_token_surface.append(token)
pred_token = []
pred_token_surface = []
for pred_id in pred_ids[ii][0]:
if pred_id in [0,1,2]:
continue
token = id2token[pred_id]
pred_token.append(token)
if '@ptr' in token:
ptr_id = min(int(token[4:]), len(tokens) - 2)
# sometimes the generated number is larger than seq length.
# Thus, we constrain the input not exceeding the limit
pred_token_surface.append(tokens[ptr_id])
else:
pred_token_surface.append(token)
if example.db_id:
f.write(example.db_id+'\n'+example.text_inp+'\n'+example.text_out+'\n')
else:
f.write(example.text_inp+'\n'+example.text_out+'\n')
f.write(' '.join(output_token)+'\n')
f.write(' '.join(output_token_surface)+'\n')
f.write(' '.join(pred_token)+'\n')
f.write(' '.join(pred_token_surface)+'\n')
f.write('\n')
data = {'database_id': example.db_id,
'interaction_id': 0,
'index_in_interaction': 0,
'flat_prediction': pred_token_surface,
'flat_gold_queries': [example.text_out.split()]}
if output_json:
json.dump(data, f_out)
f_out.write('\n')
cnt_ex += 1
f.close()
if output_json:
f_out.close()
eval_loss = eval_loss / nb_eval_steps
results = {
"loss": eval_loss,
# "accuracy_slots": np.mean(np.array(y_slot_true) == np.array(y_slot_pred)),
# "accuracy_intents": np.mean(np.array(y_intent_true) == np.array(y_intent_pred)),
# "accuracy_intent_first": np.mean(np.array(y_intent_true_first) == np.array(y_intent_pred_first)),
"exact_match": np.mean(np.array(exact_matches)),
}
return results
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='MTOP')
parser.add_argument('--mode', type=str, default='train')
parser.add_argument('--eval_on', type=str, default='test.py')
parser.add_argument('--data_dir', type=str)
parser.add_argument('--overwrite_output_vocab', default=False, action="store_true")
parser.add_argument('--output_vocab', type=str)
parser.add_argument('--output_dir', type=str)
parser.add_argument('--wandb_project', type=str)
parser.add_argument('--bert_load_path', type=str, default='')
parser.add_argument('--bert_model', type=str, default='bert-base-cased')
parser.add_argument('--do_lower_case', type=bool, default=True)
parser.add_argument('--smoothing', type=float, default=0.1)
parser.add_argument('--use_decode_emb', type=int, default=1)
parser.add_argument('--use_avg_span_extractor', type=int, default=1)
parser.add_argument('--use_schema_token_mask', type=int, default=1)
parser.add_argument('--decoder_layers', type=int, default=6)
parser.add_argument('--decoder_size', type=int, default=2048)
parser.add_argument('--decoder_heads', type=int, default=8)
parser.add_argument('--decoder_dropout', type=float, default=0.1)
parser.add_argument('--random_init', type=bool, default=False)
parser.add_argument('--num_train_epochs', type=int, default=50)
parser.add_argument('--train_batch_size', type=int, default=32)
parser.add_argument('--dev_batch_size', type=int, default=32)
parser.add_argument('--per_gpu_eval_batch_size', type=int, default=8)
parser.add_argument('--max_seq_length', type=int, default=128)
parser.add_argument('--optimizer', type=str, default='AdamW')
parser.add_argument('--warmup_proportion', type=float, default=0.1)
parser.add_argument('--learning_rate', type=float, default=2e-5)
parser.add_argument('--bert_lr', type=float, default=3e-6)
parser.add_argument('--adam_epsilon', type=float, default=1e-8)
parser.add_argument('--weight_decay', type=float, default=0.01)
parser.add_argument('--max_grad_norm', type=float, default=1.0)
parser.add_argument('--local_rank', type=int, default=-1)
args = parser.parse_args()
########################## Input Parameters ###########################
dataset = args.dataset
data_dir = args.data_dir
bert_load_path = args.bert_load_path \
if len(args.bert_load_path) else args.bert_model
bert_model = args.bert_model
do_lower_case = args.do_lower_case
train_batch_size = args.train_batch_size
dev_batch_size = args.dev_batch_size
per_gpu_eval_batch_size = args.per_gpu_eval_batch_size
num_train_epochs = args.num_train_epochs
warmup_proportion = args.warmup_proportion
learning_rate = args.learning_rate
adam_epsilon = args.adam_epsilon
weight_decay = args.weight_decay
local_rank = args.local_rank
max_seq_length = args.max_seq_length
max_grad_norm = args.max_grad_norm
output_dir = args.output_dir
output_vocab_f = os.path.join(args.data_dir, 'output_vocab.txt')
if args.overwrite_output_vocab:
output_vocab_f = args.output_vocab # overwrite the vocab to multilingual version so that we can do cross lingual
#######################################################################
if args.overwrite_output_vocab:
print("Overwrite output vocab using:", output_vocab_f)
if bert_load_path[0] == '/' or bert_load_path == '\\':
print("Loading Model from:", bert_load_path)
if args.wandb_project:
wandb.init(project=args.wandb_project, name='lr{}_batch{}'.format(learning_rate, train_batch_size))
wandb.config.learning_rate = learning_rate
wandb.config.train_batch_size = train_batch_size
if not os.path.exists(output_dir):
os.makedirs(output_dir)
logger.addHandler(logging.FileHandler(os.path.join(output_dir, "debug.log")))
logger.info(args)
# Load config and model for both eval and train
if bert_model in ['bert-base-cased', 'bert-base-multilingual-cased']:
tokenizer = BertTokenizer.from_pretrained(bert_load_path, do_lower_case=do_lower_case)
cls_token_segment_id = 1
elif bert_model in ['roberta-base', 'roberta-large']:
tokenizer = RobertaTokenizer.from_pretrained(bert_load_path, add_prefix_space=True)
cls_token_segment_id = 0
elif bert_model in ['xlm-roberta-base', 'xlm-roberta-large']:
tokenizer = XLMRobertaTokenizer.from_pretrained(bert_load_path)
cls_token_segment_id = 0
elif bert_model in ['facebook/bart-base', 'facebook/bart-large']:
tokenizer = BartTokenizer.from_pretrained(bert_load_path, add_prefix_space=True)
cls_token_segment_id = 0
elif bert_model in ['facebook/mbart-large-50', 'facebook/mbart-large-50-one-to-many-mmt']:
tokenizer = MBart50Tokenizer.from_pretrained(bert_load_path)
cls_token_segment_id = 0
elif bert_model in ['t5-large', 't5-base', 't5-small']:
tokenizer = T5Tokenizer.from_pretrained(bert_load_path)
cls_token_segment_id = 0
elif bert_model in ['google/mt5-large']:
tokenizer = MT5Tokenizer.from_pretrained(bert_load_path)
cls_token_segment_id = 0
logger.info('num_special_tokens_to_add {}'.format(tokenizer.num_special_tokens_to_add()))
output_vocab, all_outputs, num_ptrs, num_slots, num_intents = read_output_vocab(tokenizer, output_vocab_f, args.dataset)
# logger.info(output_vocab)
# logger.info(all_outputs)
logger.info('num_ptrs: {}, num_slots: {}, num_intents: {}'.format(num_ptrs, num_slots, num_intents))
outputs_map = {word: i for i, word in enumerate(all_outputs)}
id2token = {i: word for i, word in enumerate(all_outputs)}
# processor = DataProcessor(output_vocab)
# label_list = processor.get_labels()
# num_labels = len(label_list)
# label_map = {i : label for i, label in enumerate(label_list)}
# logger.info('num_labels: {}'.format(num_labels))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
n_gpu = torch.cuda.device_count()
# For debug:
# device = "cpu"
# n_gpu = 0
if bert_model in ['bert-base-cased', 'bert-base-multilingual-cased']:
config = BertConfig.from_pretrained(bert_load_path)
elif bert_model in ['roberta-base', 'roberta-large']:
config = RobertaConfig.from_pretrained(bert_load_path)
elif bert_model in ['xlm-0-base', 'xlm-roberta-large']:
config = XLMRobertaConfig.from_pretrained(bert_load_path)
elif bert_model in ['facebook/bart-base', 'facebook/bart-large']:
config = BartConfig.from_pretrained(bert_load_path)
elif bert_model in ['facebook/mbart-large-50', 'facebook/mbart-large-50-one-to-many-mmt']:
config = MBartConfig.from_pretrained(bert_load_path)
elif bert_model in ['t5-large', 't5-base', 't5-small']:
config = T5Config.from_pretrained(bert_load_path)
elif bert_model in ['google/mt5-large']:
config = MT5Config.from_pretrained(bert_load_path)
config.bert_model = bert_model
config.num_ptrs = num_ptrs
config.all_outputs = all_outputs
config.output_vocab = output_vocab
config.decoder_dropout = args.decoder_dropout
config.smoothing = args.smoothing
config.use_decode_emb = (args.use_decode_emb == 1)
config.use_avg_span_extractor = (args.use_avg_span_extractor == 1)
config.use_schema_token_mask = (args.use_schema_token_mask == 1)
if bert_model in ['facebook/bart-base', 'facebook/bart-large', 'facebook/mbart-large-50', 'facebook/mbart-large-50-one-to-many-mmt']:
if args.random_init:
model = PtrBART(config)
else:
model, loading_info = PtrBART.from_pretrained(
bert_load_path, config=config, output_loading_info=True, ignore_mismatched_sizes=True)
elif bert_model in ['t5-large', 't5-base', 't5-small', 'google/mt5-large']:
if args.random_init:
model = PtrT5(config)
else:
model, loading_info = PtrT5.from_pretrained(
bert_load_path, config=config, output_loading_info=True, ignore_mismatched_sizes=True)
else: # include other model AND local models
config.decoder_layers = args.decoder_layers
config.decoder_size = args.decoder_size
config.decoder_heads = args.decoder_heads
model, loading_info = PtrRoberta.from_pretrained(
bert_load_path, config=config, output_loading_info=True, ignore_mismatched_sizes=True)
# logger.info('loading_info')
# logger.info('missing_keys: {}'.format(loading_info['missing_keys']))
# logger.info('unexpected_keys: {}'.format(loading_info['unexpected_keys']))
# logger.info('error_msgs: {}'.format(loading_info['error_msgs']))
###### Device and Parallel
model.to(device)
if n_gpu > 1:
model = torch.nn.DataParallel(model)
if local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[local_rank],
output_device=local_rank,
find_unused_parameters=True)
if args.mode == 'train':
model.train()
#### Train Features and DataLoader
print('Loading Train')
train_sampler, train_dataloader, train_examples = create_sampler_dataloader(
config.use_decode_emb,
output_vocab, data_dir, 'train', train_batch_size,
tokenizer, cls_token_segment_id, outputs_map, max_seq_length, local_rank)
train_num = len(train_examples)
num_train_optimization_steps = math.ceil(train_num / train_batch_size) * num_train_epochs
#### Dev Features and DataLoader
print('Loading Dev')
if "dev" in args.eval_on:
dev_split = 'dev'
else:
dev_split = 'test.py'
dev_sampler, dev_dataloader, dev_examples = create_sampler_dataloader(
config.use_decode_emb,
output_vocab, data_dir, dev_split, dev_batch_size,
tokenizer, cls_token_segment_id, outputs_map, max_seq_length)
print('Done')
#### Optimizer
param_optimizer = list(model.named_parameters())
# for n, p in param_optimizer:
# logger.info('{}, {}, {}'.format(n, p.size(), p.requires_grad))
no_decay = ['bias','LayerNorm.weight','norm.a_2', 'norm.b_2']
# optimizer_grouped_parameters = [
# {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': weight_decay},
# {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
# ]
optimizer_grouped_parameters = [
{'params': [], 'weight_decay': weight_decay, 'lr': learning_rate},
{'params': [], 'weight_decay': 0.0, 'lr': learning_rate},
{'params': [], 'weight_decay': weight_decay, 'lr': args.bert_lr},
{'params': [], 'weight_decay': 0.0, 'lr': args.bert_lr},
]
for n, p in param_optimizer:
if any(nd in n for nd in no_decay):
if n.startswith(model.base_model_prefix):
# no decay, bert
optimizer_grouped_parameters[3]['params'].append(p)
else:
# no decay, not bert
optimizer_grouped_parameters[1]['params'].append(p)
else:
if n.startswith(model.base_model_prefix):
# decay, bert
optimizer_grouped_parameters[2]['params'].append(p)
else:
# decay, not bert
optimizer_grouped_parameters[0]['params'].append(p)
# for g in optimizer_grouped_parameters:
# print(len(g['params']), g['lr'], g['weight_decay'])
# exit()
if args.optimizer == 'AdamW':
optimizer = AdamW(optimizer_grouped_parameters, eps=adam_epsilon)
warmup_steps = int(warmup_proportion * num_train_optimization_steps)
scheduler = get_linear_schedule_with_warmup(optimizer,
num_warmup_steps=warmup_steps,
num_training_steps=num_train_optimization_steps)
elif args.optimizer == 'Adafactor':
optimizer = Adafactor(optimizer_grouped_parameters, eps=(1e-30, 1e-3), clip_threshold=1.0, beta1=0.0, scale_parameter=False, relative_step=False, warmup_init=False)
logger.info("***** Running training *****")
logger.info(" Num examples = %d", train_num)
logger.info(" Batch size = %d", train_batch_size)
logger.info(" Num epochs = %d", num_train_epochs)
logger.info(" Num steps = %d", num_train_optimization_steps)
global_step = 0
best_model = None
best_epoch = None
best_dev_loss = 1e6
epoch = 0
for _ in trange(int(num_train_epochs), desc="Epoch"):
output_f = os.path.join(output_dir, 'dev_output.txt')
dev_results = evaluate(model, dev_examples, dev_sampler, dev_dataloader, id2token, device, n_gpu, output_f, decode=False, use_decode_emb=config.use_decode_emb)
dev_loss = dev_results['loss']
logger.info('Epoch: {}, Dev loss: {}'.format(epoch, dev_loss))
wandb.log({'dev_loss': dev_loss})
# dev_results = evaluate(model, dev_examples, dev_sampler, dev_dataloader, id2token, num_slots, num_intents, device, n_gpu, output_f, decode=False)
# dev_loss = dev_results['loss']
# logger.info('Epoch: {}, Dev loss: {}'.format(epoch, dev_loss))
if dev_loss < best_dev_loss:
best_dev_loss = dev_loss
# Save Model
# model_config = {"bert_model":bert_model,
# "do_lower":do_lower_case,
# "max_seq_length":max_seq_length,
# # "num_labels":len(label_list),
# # "label_map":label_map,
# "num_ptrs": num_ptrs,
# "all_outputs": all_outputs,
# "output_vocab": output_vocab,
# 'decoder_layers': args.decoder_layers,
# 'decoder_size': args.decoder_size,
# 'decoder_heads': args.decoder_heads,
# 'decoder_dropout': args.decoder_dropout,
# "epoch": epoch}
best_model = copy.deepcopy(model)
best_epoch = epoch
save_model(model, tokenizer, output_dir)
tr_loss, nb_tr_examples, nb_tr_steps = 0, 0, 0
train_sampler.shuffle()
for idx, i in enumerate(train_sampler):
batch = train_dataloader.dataset[i]
batch = tuple(t.to(device) for t in batch)
input_ids = batch[0]
# input_ids, attention_mask, source_mask, token_type_ids, output_ids, \
# output_ids_y, output_mask, ntokens, input_length, output_length = batch
# print(batch[1].size())
# print(batch[2].size())
# print(batch[6].size())
# print(batch[7].size())
# exit()
if len(batch) == 11:
outputs = model(input_ids=batch[0], attention_mask=batch[1], source_mask=batch[2],
token_type_ids=batch[3], output_ids=batch[4],
output_ids_y=batch[5], target_mask=batch[6], output_mask=batch[7], ntokens=batch[8],
input_length=batch[9], output_length=batch[10])
else:
outputs = model(input_ids=batch[0], attention_mask=batch[1], source_mask=batch[2],
token_type_ids=batch[3], output_ids=batch[4],
output_ids_y=batch[5], target_mask=batch[6], output_mask=batch[7], ntokens=batch[8],
input_length=batch[9], output_length=batch[10],
input_token_length=batch[11],
span_indices=batch[12], span_indices_mask=batch[13],
pointer_mask=batch[14], schema_token_mask=batch[15])
loss = outputs
# if (idx%100==0):
# print(loss)
# logger.info("Loss at iteration %d = %.4f", idx, loss.item())
if n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
loss.backward()
tr_loss += loss.item()
nb_tr_examples += input_ids.size(0)
nb_tr_steps += 1
if args.optimizer == 'AdamW':
torch.nn.utils.clip_grad_norm_(model.parameters(), max_grad_norm)
optimizer.step()
scheduler.step()
elif args.optimizer == 'Adafactor':
optimizer.step()
model.zero_grad()
global_step += 1
logger.info("Average loss at the end of Epoch = %.4f", tr_loss / nb_tr_steps)
wandb.log({'train_loss': tr_loss / nb_tr_steps})
epoch += 1
logger.info('EVAL')
if args.mode=='train':
logger.info('1')
dev_results = evaluate(best_model, dev_examples, dev_sampler, dev_dataloader, id2token, device, n_gpu, output_f, decode=False, use_decode_emb=config.use_decode_emb)
dev_loss = dev_results['loss']
logger.info('Epoch: {}, Dev loss: {}'.format(best_epoch, dev_loss))
# logger.info('2')
# dev_results = evaluate(best_model, dev_examples, dev_sampler, dev_dataloader, id2token, num_slots, num_intents, device, n_gpu, output_f, decode=True)
# dev_loss = dev_results['loss']
# logger.info('Epoch: {}, Dev loss: {}'.format(best_epoch, dev_loss))
# Load the best model
# with open(os.path.join(output_dir, "model_config.json")) as f:
# model_config = json.load(f)
if bert_model in ['bert-base-cased', 'bert-base-multilingual-cased']:
tokenizer = BertTokenizer.from_pretrained(output_dir, do_lower_case=do_lower_case)
PtrRoberta.config_class = BertConfig
elif bert_model in ['roberta-base', 'roberta-large']:
tokenizer = RobertaTokenizer.from_pretrained(output_dir, add_prefix_space=True)
PtrRoberta.config_class = RobertaConfig
elif bert_model in ['xlm-roberta-base', 'xlm-roberta-large']:
tokenizer = XLMRobertaTokenizer.from_pretrained(output_dir)
PtrRoberta.config_class = XLMRobertaConfig
elif bert_model in ['facebook/bart-base', 'facebook/bart-large']:
tokenizer = BartTokenizer.from_pretrained(output_dir, add_prefix_space=True)
PtrBART.config_class = BartConfig
elif bert_model in ['facebook/mbart-large-50', 'facebook/mbart-large-50-one-to-many-mmt']:
tokenizer = MBart50Tokenizer.from_pretrained(output_dir)
PtrBART.config_class = MBartConfig
elif bert_model in ['t5-large', 't5-base', 't5-small']:
tokenizer = T5Tokenizer.from_pretrained(output_dir)
PtrT5.config_class = T5Config
elif bert_model in ['google/mt5-large']:
tokenizer = MT5Tokenizer.from_pretrained(output_dir)
PtrT5.config_class = MT5Config
if bert_model in ['facebook/bart-base', 'facebook/bart-large', 'facebook/mbart-large-50', 'facebook/mbart-large-50-one-to-many-mmt']:
model, loading_info = PtrBART.from_pretrained(output_dir, output_loading_info=True)
elif bert_model in ['t5-large', 't5-base', 't5-small', 'google/mt5-large']:
model, loading_info = PtrT5.from_pretrained(output_dir, output_loading_info=True)
else:
# model, loading_info = PtrRoberta.from_pretrained(
# output_dir, bert_model=bert_model, num_ptrs=model_config['num_ptrs'],
# all_outputs=model_config['all_outputs'], output_vocab=model_config['output_vocab'],
# decoder_layers=model_config['decoder_layers'], decoder_size=model_config['decoder_size'], decoder_heads=model_config['decoder_heads'], decoder_dropout=model_config['decoder_dropout'],
# output_loading_info=True)
model, loading_info = PtrRoberta.from_pretrained(output_dir, output_loading_info=True)
logger.info('loading_info')
logger.info('missing_keys: {}'.format(loading_info['missing_keys']))
logger.info('unexpected_keys: {}'.format(loading_info['unexpected_keys']))
logger.info('error_msgs: {}'.format(loading_info['error_msgs']))
model.to(device)
# multi-gpu evaluate
if n_gpu > 1:
model = torch.nn.DataParallel(model)
model.eval()
# logger.info('3')
# dev_results = evaluate(model, dev_sampler, dev_dataloader, id2token, num_slots, num_intents, device, n_gpu, output_f, decode=False)
# dev_loss = dev_results['loss']
# logger.info('Epoch: {}, Dev loss: {}'.format(epoch, dev_loss))
# print('Start Eval')
if "dev" in args.eval_on:
data_sampler, data_dataloader, dev_examples = create_sampler_dataloader(
config.use_decode_emb,
output_vocab, data_dir, 'dev', dev_batch_size,
tokenizer, cls_token_segment_id, outputs_map, max_seq_length, sort=False)
output_f = os.path.join(output_dir, 'dev_output.txt')
output_json = os.path.join(output_dir, 'dev_output.json')
dev_num = len(dev_examples)
# logger.info('4')
# dev_results = evaluate(model, dev_examples, data_sampler, data_dataloader, id2token, device, n_gpu, output_f, decode=False, use_decode_emb=config.use_decode_emb)
# logger.info('Dev Num: {}'.format(dev_num))
# logger.info("Dev Results: ")
# logger.info(dev_results)
logger.info('Eval on Dev')
dev_results = evaluate(model, dev_examples, data_sampler, data_dataloader, id2token, device, n_gpu, output_f, output_json=output_json, decode=True, use_decode_emb=config.use_decode_emb)
logger.info('Dev Num: {}'.format(dev_num))
logger.info("Dev Results: ")
logger.info(dev_results)
if dataset == 'MSPIDER':
eval_cmd = 'python postprocess_eval.py --dataset=spider --split=dev --pred_file {} --remove_from'.format(output_json)
subprocess.run(eval_cmd, shell=True)
wandb.log({'dev_exact_match': dev_results['exact_match']})
if "test.py" in args.eval_on:
data_sampler, data_dataloader, test_examples = create_sampler_dataloader(
config.use_decode_emb,
output_vocab, data_dir, 'test.py', dev_batch_size,
tokenizer, cls_token_segment_id, outputs_map, max_seq_length, sort=False)
output_f = os.path.join(output_dir, 'test_output.txt')
test_num = len(test_examples)
test_results = evaluate(model, test_examples, data_sampler, data_dataloader, id2token, device, n_gpu, output_f, decode=True, use_decode_emb=config.use_decode_emb)
logger.info('Eval on Test')
logger.info('Test Num: {}'.format(test_num))
logger.info("Test Results: ")
logger.info(test_results)
wandb.log({'test_exact_match': test_results['exact_match']})
return
if __name__ == '__main__':
main()