-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenchmark.py
67 lines (54 loc) · 1.62 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
__author__ = 'Mateusz Bednarski'
from counting_sort import counting_sort
from qsort import QuickSort
#from qsort2 import qsort1 as QuickSort
from qsort_iter import QuickSortIterative
from heap_sort import heap_sort
from shell import shell_sort
from utils import measure_exe_time
from generators import *
from sys import setrecursionlimit
import numpy as np
probe_sizes = [10, 1000, 5000, 10000, 20000, 35000, 50000, 70000, 85000, 100000,200000,500000,1000000]
#probe_sizes = [10,100, 1000, 10000,20000]
repeats = 5
def single_algo(gen):
dd = np.zeros((1 + repeats, len(probe_sizes)))
dd[0, :] = probe_sizes
#to fill
algo = shell_sort
probeIndex = 0
too_deep = False
for probe in probe_sizes:
if too_deep:
break
print 'Probe size ', probe, '(Index ', probeIndex, ')...'
for row in range(1, repeats + 1):
print 'Repeat ', row, '...'
data = gen(probe)
try:
perf = measure_exe_time(algo, data)
dd[row, probeIndex] = perf
print perf
except RuntimeError:
dd[row, probeIndex] = 0
too_deep = True
probeIndex += 1
return dd
if __name__ == '__main__':
setrecursionlimit(10000)
print 'random'
random = single_algo(generate_random_sequence)
print 'asc'
asc = single_algo(generate_ascending_sequence)
print 'desc'
desc = single_algo(generate_descending_sequence)
print 'v'
v = single_algo(generate_v_sequence)
#print measure_exe_time(QuickSortIterative, generate_ascending_sequence(20000))
#to fill
hdr = 'ssort'
np.savetxt('ssort_rnd2', random, header=hdr)
np.savetxt('ssort_asc2', asc, header=hdr)
np.savetxt('ssort_desc2', desc, header=hdr)
np.savetxt('ssort_v2', v, header=hdr)