-
-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathzarr.py
1831 lines (1614 loc) · 66.8 KB
/
zarr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from __future__ import annotations
import base64
import json
import os
import struct
from collections.abc import Hashable, Iterable, Mapping
from typing import TYPE_CHECKING, Any, Literal, cast
import numpy as np
import pandas as pd
from xarray import coding, conventions
from xarray.backends.common import (
BACKEND_ENTRYPOINTS,
AbstractWritableDataStore,
BackendArray,
BackendEntrypoint,
_encode_variable_name,
_normalize_path,
datatree_from_dict_with_io_cleanup,
ensure_dtype_not_object,
)
from xarray.backends.store import StoreBackendEntrypoint
from xarray.core import indexing
from xarray.core.treenode import NodePath
from xarray.core.types import ZarrWriteModes
from xarray.core.utils import (
FrozenDict,
HiddenKeyDict,
attempt_import,
close_on_error,
emit_user_level_warning,
)
from xarray.core.variable import Variable
from xarray.namedarray.parallelcompat import guess_chunkmanager
from xarray.namedarray.pycompat import integer_types
from xarray.namedarray.utils import module_available
if TYPE_CHECKING:
from xarray.backends.common import AbstractDataStore
from xarray.core.dataset import Dataset
from xarray.core.datatree import DataTree
from xarray.core.types import ReadBuffer, ZarrArray, ZarrGroup
def _get_mappers(*, storage_options, store, chunk_store):
# expand str and path-like arguments
store = _normalize_path(store)
chunk_store = _normalize_path(chunk_store)
kwargs = {}
if storage_options is None:
mapper = store
chunk_mapper = chunk_store
else:
if not isinstance(store, str):
raise ValueError(
f"store must be a string to use storage_options. Got {type(store)}"
)
if _zarr_v3():
kwargs["storage_options"] = storage_options
mapper = store
chunk_mapper = chunk_store
else:
from fsspec import get_mapper
mapper = get_mapper(store, **storage_options)
if chunk_store is not None:
chunk_mapper = get_mapper(chunk_store, **storage_options)
else:
chunk_mapper = chunk_store
return kwargs, mapper, chunk_mapper
def _choose_default_mode(
*,
mode: ZarrWriteModes | None,
append_dim: Hashable | None,
region: Mapping[str, slice | Literal["auto"]] | Literal["auto"] | None,
) -> ZarrWriteModes:
if mode is None:
if append_dim is not None:
mode = "a"
elif region is not None:
mode = "r+"
else:
mode = "w-"
if mode not in ["a", "a-"] and append_dim is not None:
raise ValueError("cannot set append_dim unless mode='a' or mode=None")
if mode not in ["a", "a-", "r+"] and region is not None:
raise ValueError(
"cannot set region unless mode='a', mode='a-', mode='r+' or mode=None"
)
if mode not in ["w", "w-", "a", "a-", "r+"]:
raise ValueError(
"The only supported options for mode are 'w', "
f"'w-', 'a', 'a-', and 'r+', but mode={mode!r}"
)
return mode
def _zarr_v3() -> bool:
return module_available("zarr", minversion="3")
# need some special secret attributes to tell us the dimensions
DIMENSION_KEY = "_ARRAY_DIMENSIONS"
ZarrFormat = Literal[2, 3]
class FillValueCoder:
"""Handle custom logic to safely encode and decode fill values in Zarr.
Possibly redundant with logic in xarray/coding/variables.py but needs to be
isolated from NetCDF-specific logic.
"""
@classmethod
def encode(cls, value: int | float | str | bytes, dtype: np.dtype[Any]) -> Any:
if dtype.kind in "S":
# byte string, this implies that 'value' must also be `bytes` dtype.
assert isinstance(value, bytes)
return base64.standard_b64encode(value).decode()
elif dtype.kind in "b":
# boolean
return bool(value)
elif dtype.kind in "iu":
# todo: do we want to check for decimals?
return int(value)
elif dtype.kind in "f":
return base64.standard_b64encode(struct.pack("<d", float(value))).decode()
elif dtype.kind in "U":
return str(value)
else:
raise ValueError(f"Failed to encode fill_value. Unsupported dtype {dtype}")
@classmethod
def decode(cls, value: int | float | str | bytes, dtype: str | np.dtype[Any]):
if dtype == "string":
# zarr V3 string type
return str(value)
elif dtype == "bytes":
# zarr V3 bytes type
assert isinstance(value, str | bytes)
return base64.standard_b64decode(value)
np_dtype = np.dtype(dtype)
if np_dtype.kind in "f":
assert isinstance(value, str | bytes)
return struct.unpack("<d", base64.standard_b64decode(value))[0]
elif np_dtype.kind in "b":
return bool(value)
elif np_dtype.kind in "iu":
return int(value)
else:
raise ValueError(f"Failed to decode fill_value. Unsupported dtype {dtype}")
def encode_zarr_attr_value(value):
"""
Encode a attribute value as something that can be serialized as json
Many xarray datasets / variables have numpy arrays and values. This
function handles encoding / decoding of such items.
ndarray -> list
scalar array -> scalar
other -> other (no change)
"""
if isinstance(value, np.ndarray):
encoded = value.tolist()
elif isinstance(value, np.generic):
encoded = value.item()
else:
encoded = value
return encoded
class ZarrArrayWrapper(BackendArray):
__slots__ = ("_array", "dtype", "shape")
def __init__(self, zarr_array):
# some callers attempt to evaluate an array if an `array` property exists on the object.
# we prefix with _ to avoid this inference.
self._array = zarr_array
self.shape = self._array.shape
# preserve vlen string object dtype (GH 7328)
if (
not _zarr_v3()
and self._array.filters is not None
and any(filt.codec_id == "vlen-utf8" for filt in self._array.filters)
):
dtype = coding.strings.create_vlen_dtype(str)
else:
dtype = self._array.dtype
self.dtype = dtype
def get_array(self):
return self._array
def _oindex(self, key):
return self._array.oindex[key]
def _vindex(self, key):
return self._array.vindex[key]
def _getitem(self, key):
return self._array[key]
def __getitem__(self, key):
array = self._array
if isinstance(key, indexing.BasicIndexer):
method = self._getitem
elif isinstance(key, indexing.VectorizedIndexer):
method = self._vindex
elif isinstance(key, indexing.OuterIndexer):
method = self._oindex
return indexing.explicit_indexing_adapter(
key, array.shape, indexing.IndexingSupport.VECTORIZED, method
)
# if self.ndim == 0:
# could possibly have a work-around for 0d data here
def _determine_zarr_chunks(
enc_chunks, var_chunks, ndim, name, safe_chunks, region, mode, shape
):
"""
Given encoding chunks (possibly None or []) and variable chunks
(possibly None or []).
"""
# zarr chunk spec:
# chunks : int or tuple of ints, optional
# Chunk shape. If not provided, will be guessed from shape and dtype.
# if there are no chunks in encoding and the variable data is a numpy
# array, then we let zarr use its own heuristics to pick the chunks
if not var_chunks and not enc_chunks:
return None
# if there are no chunks in encoding but there are dask chunks, we try to
# use the same chunks in zarr
# However, zarr chunks needs to be uniform for each array
# https://zarr-specs.readthedocs.io/en/latest/v2/v2.0.html#chunks
# while dask chunks can be variable sized
# https://dask.pydata.org/en/latest/array-design.html#chunks
if var_chunks and not enc_chunks:
if any(len(set(chunks[:-1])) > 1 for chunks in var_chunks):
raise ValueError(
"Zarr requires uniform chunk sizes except for final chunk. "
f"Variable named {name!r} has incompatible dask chunks: {var_chunks!r}. "
"Consider rechunking using `chunk()`."
)
if any((chunks[0] < chunks[-1]) for chunks in var_chunks):
raise ValueError(
"Final chunk of Zarr array must be the same size or smaller "
f"than the first. Variable named {name!r} has incompatible Dask chunks {var_chunks!r}."
"Consider either rechunking using `chunk()` or instead deleting "
"or modifying `encoding['chunks']`."
)
# return the first chunk for each dimension
return tuple(chunk[0] for chunk in var_chunks)
# from here on, we are dealing with user-specified chunks in encoding
# zarr allows chunks to be an integer, in which case it uses the same chunk
# size on each dimension.
# Here we re-implement this expansion ourselves. That makes the logic of
# checking chunk compatibility easier
if isinstance(enc_chunks, integer_types):
enc_chunks_tuple = ndim * (enc_chunks,)
else:
enc_chunks_tuple = tuple(enc_chunks)
if len(enc_chunks_tuple) != ndim:
# throw away encoding chunks, start over
return _determine_zarr_chunks(
None, var_chunks, ndim, name, safe_chunks, region, mode, shape
)
for x in enc_chunks_tuple:
if not isinstance(x, int):
raise TypeError(
"zarr chunk sizes specified in `encoding['chunks']` "
"must be an int or a tuple of ints. "
f"Instead found encoding['chunks']={enc_chunks_tuple!r} "
f"for variable named {name!r}."
)
# if there are chunks in encoding and the variable data is a numpy array,
# we use the specified chunks
if not var_chunks:
return enc_chunks_tuple
# the hard case
# DESIGN CHOICE: do not allow multiple dask chunks on a single zarr chunk
# this avoids the need to get involved in zarr synchronization / locking
# From zarr docs:
# "If each worker in a parallel computation is writing to a
# separate region of the array, and if region boundaries are perfectly aligned
# with chunk boundaries, then no synchronization is required."
# TODO: incorporate synchronizer to allow writes from multiple dask
# threads
# If it is possible to write on partial chunks then it is not necessary to check
# the last one contained on the region
allow_partial_chunks = mode != "r+"
base_error = (
f"Specified zarr chunks encoding['chunks']={enc_chunks_tuple!r} for "
f"variable named {name!r} would overlap multiple dask chunks {var_chunks!r} "
f"on the region {region}. "
f"Writing this array in parallel with dask could lead to corrupted data. "
f"Consider either rechunking using `chunk()`, deleting "
f"or modifying `encoding['chunks']`, or specify `safe_chunks=False`."
)
for zchunk, dchunks, interval, size in zip(
enc_chunks_tuple, var_chunks, region, shape, strict=True
):
if not safe_chunks:
continue
for dchunk in dchunks[1:-1]:
if dchunk % zchunk:
raise ValueError(base_error)
region_start = interval.start if interval.start else 0
if len(dchunks) > 1:
# The first border size is the amount of data that needs to be updated on the
# first chunk taking into account the region slice.
first_border_size = zchunk
if allow_partial_chunks:
first_border_size = zchunk - region_start % zchunk
if (dchunks[0] - first_border_size) % zchunk:
raise ValueError(base_error)
if not allow_partial_chunks:
region_stop = interval.stop if interval.stop else size
if region_start % zchunk:
# The last chunk which can also be the only one is a partial chunk
# if it is not aligned at the beginning
raise ValueError(base_error)
if np.ceil(region_stop / zchunk) == np.ceil(size / zchunk):
# If the region is covering the last chunk then check
# if the reminder with the default chunk size
# is equal to the size of the last chunk
if dchunks[-1] % zchunk != size % zchunk:
raise ValueError(base_error)
elif dchunks[-1] % zchunk:
raise ValueError(base_error)
return enc_chunks_tuple
def _get_zarr_dims_and_attrs(zarr_obj, dimension_key, try_nczarr):
# Zarr V3 explicitly stores the dimension names in the metadata
try:
# if this exists, we are looking at a Zarr V3 array
# convert None to empty tuple
dimensions = zarr_obj.metadata.dimension_names or ()
except AttributeError:
# continue to old code path
pass
else:
attributes = dict(zarr_obj.attrs)
return dimensions, attributes
# Zarr arrays do not have dimensions. To get around this problem, we add
# an attribute that specifies the dimension. We have to hide this attribute
# when we send the attributes to the user.
# zarr_obj can be either a zarr group or zarr array
try:
# Xarray-Zarr
dimensions = zarr_obj.attrs[dimension_key]
except KeyError as e:
if not try_nczarr:
raise KeyError(
f"Zarr object is missing the attribute `{dimension_key}`, which is "
"required for xarray to determine variable dimensions."
) from e
# NCZarr defines dimensions through metadata in .zarray
zarray_path = os.path.join(zarr_obj.path, ".zarray")
zarray = json.loads(zarr_obj.store[zarray_path])
try:
# NCZarr uses Fully Qualified Names
dimensions = [
os.path.basename(dim) for dim in zarray["_NCZARR_ARRAY"]["dimrefs"]
]
except KeyError as e:
raise KeyError(
f"Zarr object is missing the attribute `{dimension_key}` and the NCZarr metadata, "
"which are required for xarray to determine variable dimensions."
) from e
nc_attrs = [attr for attr in zarr_obj.attrs if attr.lower().startswith("_nc")]
attributes = HiddenKeyDict(zarr_obj.attrs, [dimension_key] + nc_attrs)
return dimensions, attributes
def extract_zarr_variable_encoding(
variable,
raise_on_invalid=False,
name=None,
*,
safe_chunks=True,
region=None,
mode=None,
shape=None,
):
"""
Extract zarr encoding dictionary from xarray Variable
Parameters
----------
variable : Variable
raise_on_invalid : bool, optional
name: str | Hashable, optional
safe_chunks: bool, optional
region: tuple[slice, ...], optional
mode: str, optional
shape: tuple[int, ...], optional
Returns
-------
encoding : dict
Zarr encoding for `variable`
"""
shape = shape if shape else variable.shape
encoding = variable.encoding.copy()
safe_to_drop = {"source", "original_shape", "preferred_chunks"}
valid_encodings = {
"chunks",
"shards",
"compressor", # TODO: delete when min zarr >=3
"compressors",
"filters",
"serializer",
"cache_metadata",
"write_empty_chunks",
}
for k in safe_to_drop:
if k in encoding:
del encoding[k]
if raise_on_invalid:
invalid = [k for k in encoding if k not in valid_encodings]
if invalid:
raise ValueError(
f"unexpected encoding parameters for zarr backend: {invalid!r}"
)
else:
for k in list(encoding):
if k not in valid_encodings:
del encoding[k]
chunks = _determine_zarr_chunks(
enc_chunks=encoding.get("chunks"),
var_chunks=variable.chunks,
ndim=variable.ndim,
name=name,
safe_chunks=safe_chunks,
region=region,
mode=mode,
shape=shape,
)
if _zarr_v3() and chunks is None:
chunks = "auto"
encoding["chunks"] = chunks
return encoding
# Function below is copied from conventions.encode_cf_variable.
# The only change is to raise an error for object dtypes.
def encode_zarr_variable(var, needs_copy=True, name=None):
"""
Converts an Variable into an Variable which follows some
of the CF conventions:
- Nans are masked using _FillValue (or the deprecated missing_value)
- Rescaling via: scale_factor and add_offset
- datetimes are converted to the CF 'units since time' format
- dtype encodings are enforced.
Parameters
----------
var : Variable
A variable holding un-encoded data.
Returns
-------
out : Variable
A variable which has been encoded as described above.
"""
var = conventions.encode_cf_variable(var, name=name)
var = ensure_dtype_not_object(var, name=name)
# zarr allows unicode, but not variable-length strings, so it's both
# simpler and more compact to always encode as UTF-8 explicitly.
# TODO: allow toggling this explicitly via dtype in encoding.
# TODO: revisit this now that Zarr _does_ allow variable-length strings
coder = coding.strings.EncodedStringCoder(allows_unicode=True)
var = coder.encode(var, name=name)
var = coding.strings.ensure_fixed_length_bytes(var)
return var
def _validate_datatypes_for_zarr_append(vname, existing_var, new_var):
"""If variable exists in the store, confirm dtype of the data to append is compatible with
existing dtype.
"""
if (
np.issubdtype(new_var.dtype, np.number)
or np.issubdtype(new_var.dtype, np.datetime64)
or np.issubdtype(new_var.dtype, np.bool_)
or new_var.dtype == object
or (new_var.dtype.kind in ("S", "U") and existing_var.dtype == object)
):
# We can skip dtype equality checks under two conditions: (1) if the var to append is
# new to the dataset, because in this case there is no existing var to compare it to;
# or (2) if var to append's dtype is known to be easy-to-append, because in this case
# we can be confident appending won't cause problems. Examples of dtypes which are not
# easy-to-append include length-specified strings of type `|S*` or `<U*` (where * is a
# positive integer character length). For these dtypes, appending dissimilar lengths
# can result in truncation of appended data. Therefore, variables which already exist
# in the dataset, and with dtypes which are not known to be easy-to-append, necessitate
# exact dtype equality, as checked below.
pass
elif not new_var.dtype == existing_var.dtype:
raise ValueError(
f"Mismatched dtypes for variable {vname} between Zarr store on disk "
f"and dataset to append. Store has dtype {existing_var.dtype} but "
f"dataset to append has dtype {new_var.dtype}."
)
def _validate_and_transpose_existing_dims(
var_name, new_var, existing_var, region, append_dim
):
if new_var.dims != existing_var.dims:
if set(existing_var.dims) == set(new_var.dims):
new_var = new_var.transpose(*existing_var.dims)
else:
raise ValueError(
f"variable {var_name!r} already exists with different "
f"dimension names {existing_var.dims} != "
f"{new_var.dims}, but changing variable "
f"dimensions is not supported by to_zarr()."
)
existing_sizes = {}
for dim, size in existing_var.sizes.items():
if region is not None and dim in region:
start, stop, stride = region[dim].indices(size)
assert stride == 1 # region was already validated
size = stop - start
if dim != append_dim:
existing_sizes[dim] = size
new_sizes = {dim: size for dim, size in new_var.sizes.items() if dim != append_dim}
if existing_sizes != new_sizes:
raise ValueError(
f"variable {var_name!r} already exists with different "
f"dimension sizes: {existing_sizes} != {new_sizes}. "
f"to_zarr() only supports changing dimension sizes when "
f"explicitly appending, but append_dim={append_dim!r}. "
f"If you are attempting to write to a subset of the "
f"existing store without changing dimension sizes, "
f"consider using the region argument in to_zarr()."
)
return new_var
def _put_attrs(zarr_obj, attrs):
"""Raise a more informative error message for invalid attrs."""
try:
zarr_obj.attrs.put(attrs)
except TypeError as e:
raise TypeError("Invalid attribute in Dataset.attrs.") from e
return zarr_obj
class ZarrStore(AbstractWritableDataStore):
"""Store for reading and writing data via zarr"""
__slots__ = (
"_append_dim",
"_cache_members",
"_close_store_on_close",
"_consolidate_on_close",
"_group",
"_members",
"_mode",
"_read_only",
"_safe_chunks",
"_synchronizer",
"_use_zarr_fill_value_as_mask",
"_write_empty",
"_write_region",
"zarr_group",
)
@classmethod
def open_store(
cls,
store,
mode: ZarrWriteModes = "r",
synchronizer=None,
group=None,
consolidated=False,
consolidate_on_close=False,
chunk_store=None,
storage_options=None,
append_dim=None,
write_region=None,
safe_chunks=True,
zarr_version=None,
zarr_format=None,
use_zarr_fill_value_as_mask=None,
write_empty: bool | None = None,
cache_members: bool = True,
):
(
zarr_group,
consolidate_on_close,
close_store_on_close,
use_zarr_fill_value_as_mask,
) = _get_open_params(
store=store,
mode=mode,
synchronizer=synchronizer,
group=group,
consolidated=consolidated,
consolidate_on_close=consolidate_on_close,
chunk_store=chunk_store,
storage_options=storage_options,
zarr_version=zarr_version,
use_zarr_fill_value_as_mask=use_zarr_fill_value_as_mask,
zarr_format=zarr_format,
)
group_paths = list(_iter_zarr_groups(zarr_group, parent=group))
return {
group: cls(
zarr_group.get(group),
mode,
consolidate_on_close,
append_dim,
write_region,
safe_chunks,
write_empty,
close_store_on_close,
use_zarr_fill_value_as_mask,
cache_members=cache_members,
)
for group in group_paths
}
@classmethod
def open_group(
cls,
store,
mode: ZarrWriteModes = "r",
synchronizer=None,
group=None,
consolidated=False,
consolidate_on_close=False,
chunk_store=None,
storage_options=None,
append_dim=None,
write_region=None,
safe_chunks=True,
zarr_version=None,
zarr_format=None,
use_zarr_fill_value_as_mask=None,
write_empty: bool | None = None,
cache_members: bool = True,
):
(
zarr_group,
consolidate_on_close,
close_store_on_close,
use_zarr_fill_value_as_mask,
) = _get_open_params(
store=store,
mode=mode,
synchronizer=synchronizer,
group=group,
consolidated=consolidated,
consolidate_on_close=consolidate_on_close,
chunk_store=chunk_store,
storage_options=storage_options,
zarr_version=zarr_version,
use_zarr_fill_value_as_mask=use_zarr_fill_value_as_mask,
zarr_format=zarr_format,
)
return cls(
zarr_group,
mode,
consolidate_on_close,
append_dim,
write_region,
safe_chunks,
write_empty,
close_store_on_close,
use_zarr_fill_value_as_mask,
cache_members,
)
def __init__(
self,
zarr_group,
mode=None,
consolidate_on_close=False,
append_dim=None,
write_region=None,
safe_chunks=True,
write_empty: bool | None = None,
close_store_on_close: bool = False,
use_zarr_fill_value_as_mask=None,
cache_members: bool = True,
):
self.zarr_group = zarr_group
self._read_only = self.zarr_group.read_only
self._synchronizer = self.zarr_group.synchronizer
self._group = self.zarr_group.path
self._mode = mode
self._consolidate_on_close = consolidate_on_close
self._append_dim = append_dim
self._write_region = write_region
self._safe_chunks = safe_chunks
self._write_empty = write_empty
self._close_store_on_close = close_store_on_close
self._use_zarr_fill_value_as_mask = use_zarr_fill_value_as_mask
self._cache_members: bool = cache_members
self._members: dict[str, ZarrArray | ZarrGroup] = {}
if self._cache_members:
# initialize the cache
# this cache is created here and never updated.
# If the `ZarrStore` instance creates a new zarr array, or if an external process
# removes an existing zarr array, then the cache will be invalid.
# We use this cache only to record any pre-existing arrays when the group was opened
# create a new ZarrStore instance if you want to
# capture the current state of the zarr group, or create a ZarrStore with
# `cache_members` set to `False` to disable this cache and instead fetch members
# on demand.
self._members = self._fetch_members()
@property
def members(self) -> dict[str, ZarrArray | ZarrGroup]:
"""
Model the arrays and groups contained in self.zarr_group as a dict. If `self._cache_members`
is true, the dict is cached. Otherwise, it is retrieved from storage.
"""
if not self._cache_members:
return self._fetch_members()
else:
return self._members
def _fetch_members(self) -> dict[str, ZarrArray | ZarrGroup]:
"""
Get the arrays and groups defined in the zarr group modelled by this Store
"""
import zarr
if zarr.__version__ >= "3":
return dict(self.zarr_group.members())
else:
return dict(self.zarr_group.items())
def array_keys(self) -> tuple[str, ...]:
from zarr import Array as ZarrArray
return tuple(
key for (key, node) in self.members.items() if isinstance(node, ZarrArray)
)
def arrays(self) -> tuple[tuple[str, ZarrArray], ...]:
from zarr import Array as ZarrArray
return tuple(
(key, node)
for (key, node) in self.members.items()
if isinstance(node, ZarrArray)
)
@property
def ds(self):
# TODO: consider deprecating this in favor of zarr_group
return self.zarr_group
def open_store_variable(self, name):
zarr_array = self.members[name]
data = indexing.LazilyIndexedArray(ZarrArrayWrapper(zarr_array))
try_nczarr = self._mode == "r"
dimensions, attributes = _get_zarr_dims_and_attrs(
zarr_array, DIMENSION_KEY, try_nczarr
)
attributes = dict(attributes)
encoding = {
"chunks": zarr_array.chunks,
"preferred_chunks": dict(zip(dimensions, zarr_array.chunks, strict=True)),
}
if _zarr_v3():
encoding.update(
{
"compressors": zarr_array.compressors,
"filters": zarr_array.filters,
"shards": zarr_array.shards,
}
)
if self.zarr_group.metadata.zarr_format == 3:
encoding.update({"serializer": zarr_array.serializer})
else:
encoding.update(
{
"compressor": zarr_array.compressor,
"filters": zarr_array.filters,
}
)
if self._use_zarr_fill_value_as_mask:
# Setting this attribute triggers CF decoding for missing values
# by interpreting Zarr's fill_value to mean the same as netCDF's _FillValue
if zarr_array.fill_value is not None:
attributes["_FillValue"] = zarr_array.fill_value
elif "_FillValue" in attributes:
original_zarr_dtype = zarr_array.metadata.data_type
attributes["_FillValue"] = FillValueCoder.decode(
attributes["_FillValue"], original_zarr_dtype.value
)
return Variable(dimensions, data, attributes, encoding)
def get_variables(self):
return FrozenDict((k, self.open_store_variable(k)) for k in self.array_keys())
def get_attrs(self):
return {
k: v
for k, v in self.zarr_group.attrs.asdict().items()
if not k.lower().startswith("_nc")
}
def get_dimensions(self):
try_nczarr = self._mode == "r"
dimensions = {}
for _k, v in self.arrays():
dim_names, _ = _get_zarr_dims_and_attrs(v, DIMENSION_KEY, try_nczarr)
for d, s in zip(dim_names, v.shape, strict=True):
if d in dimensions and dimensions[d] != s:
raise ValueError(
f"found conflicting lengths for dimension {d} "
f"({s} != {dimensions[d]})"
)
dimensions[d] = s
return dimensions
def set_dimensions(self, variables, unlimited_dims=None):
if unlimited_dims is not None:
raise NotImplementedError(
"Zarr backend doesn't know how to handle unlimited dimensions"
)
def set_attributes(self, attributes):
_put_attrs(self.zarr_group, attributes)
def encode_variable(self, variable):
variable = encode_zarr_variable(variable)
return variable
def encode_attribute(self, a):
return encode_zarr_attr_value(a)
def store(
self,
variables,
attributes,
check_encoding_set=frozenset(),
writer=None,
unlimited_dims=None,
):
"""
Top level method for putting data on this store, this method:
- encodes variables/attributes
- sets dimensions
- sets variables
Parameters
----------
variables : dict-like
Dictionary of key/value (variable name / xr.Variable) pairs
attributes : dict-like
Dictionary of key/value (attribute name / attribute) pairs
check_encoding_set : list-like
List of variables that should be checked for invalid encoding
values
writer : ArrayWriter
unlimited_dims : list-like
List of dimension names that should be treated as unlimited
dimensions.
dimension on which the zarray will be appended
only needed in append mode
"""
if TYPE_CHECKING:
import zarr
else:
zarr = attempt_import("zarr")
if self._mode == "w":
# always overwrite, so we don't care about existing names,
# and consistency of encoding
new_variable_names = set(variables)
existing_keys = {}
existing_variable_names = {}
else:
existing_keys = self.array_keys()
existing_variable_names = {
vn for vn in variables if _encode_variable_name(vn) in existing_keys
}
new_variable_names = set(variables) - existing_variable_names
if self._mode == "r+" and (
new_names := [k for k in variables if k not in existing_keys]
):
raise ValueError(
f"dataset contains non-pre-existing variables {new_names!r}, "
"which is not allowed in ``xarray.Dataset.to_zarr()`` with "
"``mode='r+'``. To allow writing new variables, set ``mode='a'``."
)
if self._append_dim is not None and self._append_dim not in existing_keys:
# For dimensions without coordinate values, we must parse
# the _ARRAY_DIMENSIONS attribute on *all* arrays to check if it
# is a valid existing dimension name.
# TODO: This `get_dimensions` method also does shape checking
# which isn't strictly necessary for our check.
existing_dims = self.get_dimensions()
if self._append_dim not in existing_dims:
raise ValueError(
f"append_dim={self._append_dim!r} does not match any existing "
f"dataset dimensions {existing_dims}"
)
variables_encoded, attributes = self.encode(
{vn: variables[vn] for vn in new_variable_names}, attributes
)
if existing_variable_names:
# We make sure that values to be appended are encoded *exactly*
# as the current values in the store.
# To do so, we decode variables directly to access the proper encoding,
# without going via xarray.Dataset to avoid needing to load
# index variables into memory.
existing_vars, _, _ = conventions.decode_cf_variables(
variables={
k: self.open_store_variable(name=k) for k in existing_variable_names
},
# attributes = {} since we don't care about parsing the global
# "coordinates" attribute
attributes={},
)
# Modified variables must use the same encoding as the store.
vars_with_encoding = {}
for vn in existing_variable_names:
_validate_datatypes_for_zarr_append(
vn, existing_vars[vn], variables[vn]
)
vars_with_encoding[vn] = variables[vn].copy(deep=False)
vars_with_encoding[vn].encoding = existing_vars[vn].encoding
vars_with_encoding, _ = self.encode(vars_with_encoding, {})
variables_encoded.update(vars_with_encoding)
for var_name in existing_variable_names:
variables_encoded[var_name] = _validate_and_transpose_existing_dims(
var_name,
variables_encoded[var_name],
existing_vars[var_name],
self._write_region,
self._append_dim,