-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathsensor.py
324 lines (285 loc) · 10.5 KB
/
sensor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
# Copyright Contributors to the Pyro project.
# SPDX-License-Identifier: Apache-2.0
import argparse
import itertools
import math
import os
import pyro.distributions as dist
import torch
import torch.nn as nn
from torch.optim import Adam
import funsor
import funsor.ops as ops
import funsor.torch.distributions as f_dist
from funsor.domains import Reals
from funsor.pyro.convert import dist_to_funsor, funsor_to_mvn
from funsor.tensor import Tensor, Variable
# We use a 2D continuous-time NCV dynamics model throughout.
# See http://webee.technion.ac.il/people/shimkin/Estimation09/ch8_target.pdf
TIME_STEP = 1.0
NCV_PROCESS_NOISE = torch.tensor(
[
[1 / 3, 0.0, 1 / 2, 0.0],
[0.0, 1 / 3, 0.0, 1 / 2],
[1 / 2, 0.0, 1.0, 0.0],
[0.0, 1 / 2, 0.0, 1.0],
]
)
NCV_TRANSITION_MATRIX = torch.tensor(
[
[1.0, 0.0, 0.0, 0.0],
[0.0, 1.0, 0.0, 0.0],
[1.0, 0.0, 1.0, 0.0],
[0.0, 1.0, 0.0, 1.0],
]
)
@torch.no_grad()
def generate_data(num_frames, num_sensors):
"""
Generate data from a damped NCV dynamics model
"""
dt = TIME_STEP
bias_scale = 4.0
obs_noise = 1.0
trans_noise = 0.3
# define dynamics
z = torch.cat([10.0 * torch.randn(2), torch.rand(2)]) # position # velocity
damp = 0.1 # damp the velocities
f = torch.tensor(
[
[1, 0, 0, 0],
[0, 1, 0, 0],
[dt * math.exp(-damp * dt), 0, math.exp(-damp * dt), 0],
[0, dt * math.exp(-damp * dt), 0, math.exp(-damp * dt)],
]
)
trans_dist = dist.MultivariateNormal(
torch.zeros(4), scale_tril=trans_noise * NCV_PROCESS_NOISE.cholesky()
)
# define biased sensors
sensor_bias = bias_scale * torch.randn(2 * num_sensors)
h = torch.eye(4, 2).unsqueeze(-1).expand(-1, -1, num_sensors).reshape(4, -1)
obs_dist = dist.MultivariateNormal(
sensor_bias, scale_tril=obs_noise * torch.eye(2 * num_sensors)
)
states = []
observations = []
for t in range(num_frames):
z = z @ f + trans_dist.sample()
states.append(z)
x = z @ h + obs_dist.sample()
observations.append(x)
states = torch.stack(states)
observations = torch.stack(observations)
assert observations.shape == (num_frames, num_sensors * 2)
return observations, states, sensor_bias
class Model(nn.Module):
def __init__(self, num_sensors):
super(Model, self).__init__()
self.num_sensors = num_sensors
# learnable params
self.log_bias_scale = nn.Parameter(torch.tensor(0.0))
self.log_obs_noise = nn.Parameter(torch.tensor(0.0))
self.log_trans_noise = nn.Parameter(torch.tensor(0.0))
def forward(self, observations, add_bias=True):
obs_dim = 2 * self.num_sensors
bias_scale = self.log_bias_scale.exp()
obs_noise = self.log_obs_noise.exp()
trans_noise = self.log_trans_noise.exp()
# bias distribution
bias = Variable("bias", Reals[obs_dim])
assert not torch.isnan(bias_scale), "bias scales was nan"
bias_dist = dist_to_funsor(
dist.MultivariateNormal(
torch.zeros(obs_dim),
scale_tril=bias_scale * torch.eye(2 * self.num_sensors),
)
)(value=bias)
init_dist = dist.MultivariateNormal(
torch.zeros(4), scale_tril=100.0 * torch.eye(4)
)
self.init = dist_to_funsor(init_dist)(value="state")
# hidden states
prev = Variable("prev", Reals[4])
curr = Variable("curr", Reals[4])
self.trans_dist = f_dist.MultivariateNormal(
loc=prev @ NCV_TRANSITION_MATRIX,
scale_tril=trans_noise * NCV_PROCESS_NOISE.cholesky(),
value=curr,
)
state = Variable("state", Reals[4])
obs = Variable("obs", Reals[obs_dim])
observation_matrix = Tensor(
torch.eye(4, 2)
.unsqueeze(-1)
.expand(-1, -1, self.num_sensors)
.reshape(4, -1)
)
assert observation_matrix.output.shape == (
4,
obs_dim,
), observation_matrix.output.shape
obs_loc = state @ observation_matrix
if add_bias:
obs_loc += bias
self.observation_dist = f_dist.MultivariateNormal(
loc=obs_loc, scale_tril=obs_noise * torch.eye(obs_dim), value=obs
)
logp = bias_dist
curr = "state_init"
logp += self.init(state=curr)
for t, x in enumerate(observations):
prev, curr = curr, "state_{}".format(t)
logp += self.trans_dist(prev=prev, curr=curr)
logp += self.observation_dist(state=curr, obs=x)
# marginalize out previous state
logp = logp.reduce(ops.logaddexp, prev)
# marginalize out bias variable
logp = logp.reduce(ops.logaddexp, "bias")
# save posterior over the final state
assert set(logp.inputs) == {"state_{}".format(len(observations) - 1)}
posterior = funsor_to_mvn(logp, ndims=0)
# marginalize out remaining variables
logp = logp.reduce(ops.logaddexp)
assert isinstance(logp, Tensor) and logp.shape == (), logp.pretty()
return logp.data, posterior
def track(args):
results = {} # keyed on (seed, bias, num_frames)
for seed in args.seed:
torch.manual_seed(seed)
observations, states, sensor_bias = generate_data(
max(args.num_frames), args.num_sensors
)
for bias, num_frames in itertools.product(args.bias, args.num_frames):
print(
"tracking with seed={}, bias={}, num_frames={}".format(
seed, bias, num_frames
)
)
model = Model(args.num_sensors)
optim = Adam(model.parameters(), lr=args.lr, betas=(0.5, 0.8))
losses = []
for i in range(args.num_epochs):
optim.zero_grad()
log_prob, posterior = model(observations[:num_frames], add_bias=bias)
loss = -log_prob
loss.backward()
losses.append(loss.item())
if i % 10 == 0:
print(loss.item())
optim.step()
# Collect evaluation metrics.
final_state_true = states[num_frames - 1]
assert final_state_true.shape == (4,)
final_pos_true = final_state_true[:2]
final_vel_true = final_state_true[2:]
final_state_est = posterior.loc
assert final_state_est.shape == (4,)
final_pos_est = final_state_est[:2]
final_vel_est = final_state_est[2:]
final_pos_error = float(torch.norm(final_pos_true - final_pos_est))
final_vel_error = float(torch.norm(final_vel_true - final_vel_est))
print("final_pos_error = {}".format(final_pos_error))
results[seed, bias, num_frames] = {
"args": args,
"observations": observations[:num_frames],
"states": states[:num_frames],
"sensor_bias": sensor_bias,
"losses": losses,
"bias_scale": float(model.log_bias_scale.exp()),
"obs_noise": float(model.log_obs_noise.exp()),
"trans_noise": float(model.log_trans_noise.exp()),
"final_state_estimate": posterior,
"final_pos_error": final_pos_error,
"final_vel_error": final_vel_error,
}
if args.metrics_filename:
print("saving output to: {}".format(args.metrics_filename))
torch.save(results, args.metrics_filename)
return results
def main(args):
funsor.set_backend("torch")
if (
args.force
or not args.metrics_filename
or not os.path.exists(args.metrics_filename)
):
results = track(args)
else:
results = torch.load(args.metrics_filename)
if args.plot_filename:
import matplotlib
matplotlib.use("Agg")
import numpy as np
from matplotlib import pyplot
seeds = set(seed for seed, _, _ in results)
X = args.num_frames
pyplot.figure(figsize=(5, 1.4), dpi=300)
pos_error = np.array(
[
[results[s, 0, f]["final_pos_error"] for s in seeds]
for f in args.num_frames
]
)
mse = (pos_error ** 2).mean(axis=1)
std = (pos_error ** 2).std(axis=1) / len(seeds) ** 0.5
pyplot.plot(X, mse ** 0.5, "k--")
pyplot.fill_between(
X, (mse - std) ** 0.5, (mse + std) ** 0.5, color="black", alpha=0.15, lw=0
)
pos_error = np.array(
[
[results[s, 1, f]["final_pos_error"] for s in seeds]
for f in args.num_frames
]
)
mse = (pos_error ** 2).mean(axis=1)
std = (pos_error ** 2).std(axis=1) / len(seeds) ** 0.5
pyplot.plot(X, mse ** 0.5, "r-")
pyplot.fill_between(
X, (mse - std) ** 0.5, (mse + std) ** 0.5, color="red", alpha=0.15, lw=0
)
pyplot.ylabel("Position RMSE")
pyplot.xlabel("Track Length")
pyplot.xticks((5, 10, 15, 20, 25, 30))
pyplot.xlim(5, 30)
pyplot.tight_layout(0)
pyplot.savefig(args.plot_filename)
def int_list(args):
result = []
for arg in args.split(","):
if "-" in arg:
beg, end = map(int, arg.split("-"))
result.extend(range(beg, 1 + end))
else:
result.append(int(arg))
return result
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Biased Kalman filter")
parser.add_argument(
"--seed",
default="0",
type=int_list,
help="random seed, comma delimited for multiple runs",
)
parser.add_argument(
"--bias",
default="0,1",
type=int_list,
help="whether to model bias, comma deliminted for multiple runs",
)
parser.add_argument(
"-f",
"--num-frames",
default="5,10,15,20,25,30",
type=int_list,
help="number of sensor frames, comma delimited for multiple runs",
)
parser.add_argument("--num-sensors", default=5, type=int)
parser.add_argument("-n", "--num-epochs", default=50, type=int)
parser.add_argument("--lr", default=0.1, type=float)
parser.add_argument("--metrics-filename", default="", type=str)
parser.add_argument("--plot-filename", default="", type=str)
parser.add_argument("--force", action="store_true")
args = parser.parse_args()
main(args)