forked from andre-martins/AD3
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathad3_multi.cpp
747 lines (699 loc) · 26.5 KB
/
ad3_multi.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
// Copyright (c) 2012 Andre Martins
// All Rights Reserved.
//
// This file is part of AD3 2.0.
//
// AD3 2.0 is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// AD3 2.0 is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with AD3 2.0. If not, see <http://www.gnu.org/licenses/>.
#include <math.h>
#ifdef _WIN32
#include <gettimeofday.h>
#else
#include <sys/time.h>
#endif
#include <iostream>
#include <sstream>
#include <fstream>
#include <assert.h>
#include "ad3/FactorGraph.h"
#include "ad3/Utils.h"
#include "FactorDense.h"
#include "FactorSequence.h"
#include "FactorTree.h"
#include "FactorHeadAutomaton.h"
#include "FactorGrandparentHeadAutomaton.h"
#include "FactorSequenceCompressor.h"
using namespace std;
using namespace AD3;
#define BUFFERSIZE 1024
int RunAll(const string &format,
const string &filename_graph,
const string &algorithm,
int niters,
double eta,
bool adapt_eta,
double residual_threshold,
bool convert_to_binary,
bool exact,
const string &filename_posteriors);
int LoadGraph(ifstream &file_graph,
FactorGraph *factor_graph);
int LoadGraphUAI(ifstream &file_graph,
FactorGraph *factor_graph);
int main(int argc, char** argv) {
string message = "Usage: ad3_multi --format=[ad3(*)|uai] " \
"--file_graphs=[IN] --file_posteriors=[OUT] " \
"--algorithm=[ad3(*)|psdd|mplp] " \
"(--max_iterations=[NUM] --eta=[NUM] --adapt_eta=[true(*)|false] " \
"--residual_threshold=[NUM] --convert_to_binary=[true|false(*)] " \
"--exact=[true|false(*)])";
if (argc == 1) {
cout << message << endl;
return 0;
}
string format = "ad3";
string algorithm = "ad3";
string filename_graph = "";
int niters = 1000;
double eta = 0.1;
double residual_threshold = 1e-6;
string filename_posteriors = "";
bool adapt_eta = true;
bool convert_to_binary = false;
bool exact = false;
for (int i = 1; i < argc; ++i) {
vector<string> pair;
StringSplit(argv[i], "=", &pair);
if (pair.size() != 2 || pair[0].substr(0,2) != "--") {
cout << message << endl;
return -1;
}
string param_name = pair[0].substr(2);
string param_value = pair[1];
if (param_name == "format") {
format = param_value;
} else if (param_name == "algorithm") {
algorithm = param_value;
} else if (param_name == "file_graphs") {
filename_graph = param_value;
} else if (param_name == "file_posteriors") {
filename_posteriors = param_value;
} else if (param_name == "max_iterations") {
niters = atoi(param_value.c_str());
} else if (param_name == "eta") {
eta = atof(param_value.c_str());
} else if (param_name == "adapt_eta") {
if (param_value == "false") {
adapt_eta = false;
} else if (param_value == "true") {
adapt_eta = true;
} else {
cout << "Unknown value for flag " << param_name
<< ": " << param_value << endl;
cout << message << endl;
return -1;
}
} else if (param_name == "residual_threshold") {
residual_threshold = atof(param_value.c_str());
} else if (param_name == "convert_to_binary") {
if (param_value == "false") {
convert_to_binary = false;
} else if (param_value == "true") {
convert_to_binary = true;
} else {
cout << "Unknown value for flag " << param_name
<< ": " << param_value << endl;
cout << message << endl;
return -1;
}
} else if (param_name == "exact") {
if (param_value == "false") {
exact = false;
} else if (param_value == "true") {
exact = true;
} else {
cout << "Unknown value for flag " << param_name << ": " << param_value << endl;
cout << message << endl;
return -1;
}
} else {
cout << "Unknown flag: " << param_name << endl;
cout << message << endl;
return -1;
}
}
if (exact && algorithm != "ad3") {
cout << "Error: flag --exact=true can only be set with --algorithm=ad3.";
return -1;
}
RunAll(format,
filename_graph,
algorithm,
niters,
eta,
adapt_eta,
residual_threshold,
convert_to_binary,
exact,
filename_posteriors);
return 0;
}
int RunAll(const string &format,
const string &filename_graph,
const string &algorithm,
int niters,
double eta,
bool adapt_eta,
double residual_threshold,
bool convert_to_binary,
bool exact,
const string &filename_posteriors) {
int time_ddadmm_relax = 0;
int time_ddadmm = 0;
int time_cplex_relax = 0;
int time_cplex_integer = 0;
ifstream file_graph(filename_graph.c_str(), ios_base::in);
ofstream file_posteriors(filename_posteriors.c_str(), ios_base::out);
if (file_graph.is_open()) {
while (!file_graph.eof()) {
FactorGraph factor_graph;
timeval start, end;
if (format == "ad3") {
if (0 > LoadGraph(file_graph, &factor_graph)) continue;
} else if (format == "uai") {
#if 0
cout << "UAI format not implemented yet." << endl;
assert(false);
#else
if (convert_to_binary) {
FactorGraph factor_graph_original;
if (0 > LoadGraphUAI(file_graph, &factor_graph_original)) continue;
factor_graph_original.ConvertToBinaryFactorGraph(&factor_graph);
} else {
if (0 > LoadGraphUAI(file_graph, &factor_graph)) continue;
factor_graph.FixMultiVariablesWithoutFactors();
}
#endif
}
cout << "Running " << niters << " iterations of "
<< algorithm << " (eta = "
<< eta << ")..." << endl;
gettimeofday(&start, NULL);
vector<double> posteriors;
vector<double> additional_posteriors;
double value;
if (algorithm == "ad3") {
factor_graph.SetEtaAD3(eta);
factor_graph.AdaptEtaAD3(adapt_eta);
factor_graph.SetMaxIterationsAD3(niters);
factor_graph.SetResidualThresholdAD3(residual_threshold);
if (exact) {
factor_graph.SolveExactMAPWithAD3(&posteriors, &additional_posteriors,
&value);
} else {
factor_graph.SolveLPMAPWithAD3(&posteriors, &additional_posteriors,
&value);
}
} else if (algorithm == "psdd") {
assert(!exact);
factor_graph.SetEtaPSDD(eta);
factor_graph.SetMaxIterationsPSDD(niters);
factor_graph.SolveLPMAPWithPSDD(&posteriors, &additional_posteriors, &value);
} else if (algorithm == "mplp") {
cout << "MPLP is not implemented yet.";
assert(false);
} else {
cout << "Unknown algorithm: " << algorithm << endl;
}
gettimeofday(&end, NULL);
time_ddadmm += diff_ms(end,start);
#if 0
gettimeofday(&start, NULL);
vector<double> posteriors_relax;
factor_graph.ComputeLPMAPWithAD3(&posteriors_relax, &value);
gettimeofday(&end, NULL);
time_ddadmm_relax += diff_ms(end,start);
#endif
#ifdef LPSOLVER_CPLEX
gettimeofday(&start, NULL);
vector<double> posteriors_cplex_relax;
factor_graph.ComputeLPMAPWithCPLEX(&posteriors_cplex_relax,
&additional_posteriors_cplex_relax,
&value);
gettimeofday(&end, NULL);
time_cplex_relax += diff_ms(end,start);
gettimeofday(&start, NULL);
vector<double> posteriors_cplex_integer;
factor_graph.ComputeLPMAPWithCPLEX(&posteriors_cplex_integer,
&additional_posteriors_cplex_integer,
&value);
gettimeofday(&end, NULL);
time_cplex_integer += diff_ms(end,start);
#endif
if (file_posteriors.is_open()) {
for (int i = 0; i < posteriors.size(); ++i) {
file_posteriors << posteriors[i];
#ifdef LPSOLVER_CPLEX
file_posteriors << "\t" << posteriors_cplex_relax[i]
<< "\t" << posteriors_cplex_integer[i];
#endif
file_posteriors << endl;
}
file_posteriors << endl;
for (int i = 0; i < additional_posteriors.size(); ++i) {
file_posteriors << additional_posteriors[i];
#ifdef LPSOLVER_CPLEX
file_posteriors << "\t" << additional_posteriors_cplex_relax[i]
<< "\t" << additional_posteriors_cplex_integer[i];
#endif
file_posteriors << endl;
}
file_posteriors << endl;
} else {
cout << "Error: Could not open " << filename_posteriors << " for writing." << endl;
return -1;
}
}
} else {
cout << "Error: Could not open " << filename_graph << " for reading." << endl;
return -1;
}
file_graph.clear();
file_graph.close();
file_posteriors.flush();
file_posteriors.clear();
file_posteriors.close();
#if LPSOLVER_CPLEX
cout << "Elapsed times: " << endl;
cout << "AD3 relax: " << static_cast<double>(time_ddadmm_relax)/1000.0
<< " sec." << endl;
cout << "AD3 integer: " << static_cast<double>(time_ddadmm)/1000.0
<< " sec." << endl;
cout << "CPLEX relax: " << static_cast<double>(time_cplex_relax)/1000.0
<< " sec." << endl;
cout << "CPLEX integer: " << static_cast<double>(time_cplex_integer)/1000.0
<< " sec." << endl;
#else
cout << "Elapsed time: " << static_cast<double>(time_ddadmm)/1000.0
<< " sec." << endl;
#endif
return 0;
}
int LoadGraph(ifstream &file_graph,
FactorGraph *factor_graph) {
string line;
// Read number of variables.
getline(file_graph, line);
//cout << line << endl;
if (file_graph.eof()) return -1;
TrimComments("#", &line);
int num_variables = atoi(line.c_str());
// Read number of factors.
getline(file_graph, line);
//cout << line << endl;
TrimComments("#", &line);
int num_factors = atoi(line.c_str());
// Read variable log-potentials.
vector<BinaryVariable*> variables(num_variables);
for (int i = 0; i < num_variables; ++i) {
getline(file_graph, line);
TrimComments("#", &line);
double log_potential = atof(line.c_str());
BinaryVariable* variable = factor_graph->CreateBinaryVariable();
variable->SetLogPotential(log_potential);
variables[i] = variable;
}
// Read factors.
int num_messages = 0;
int num_factor_log_potentials = 0;
for (int i = 0; i < num_factors; ++i) {
getline(file_graph, line);
TrimComments("#", &line);
vector<string> fields;
StringSplit(line, "\t ", &fields);
// Read linked variables.
int offset = 1;
int num_links = atoi(fields[1].c_str());
vector<BinaryVariable*> binary_variables(num_links);
vector<bool> negated(num_links, false);
++offset;
if (fields[0] == "PAIR" && num_links != 2) {
cout << "Error: PAIR factor must be attached to 2 variables." << endl;
return -1;
}
for (int j = 0; j < num_links; ++j) {
int k = atoi(fields[offset+j].c_str());
if (k < 0) {
negated[j] = true;
k = -k;
}
--k;
binary_variables[j] = variables[k];
}
// Read factor type.
Factor *factor;
if (fields[0] == "XOR") {
factor = factor_graph->CreateFactorXOR(binary_variables, negated);
} else if (fields[0] == "XOROUT") {
factor = factor_graph->CreateFactorXOROUT(binary_variables, negated);
} else if (fields[0] == "ATMOSTONE") {
factor = factor_graph->CreateFactorAtMostOne(binary_variables,
negated);
} else if (fields[0] == "OR") {
factor = factor_graph->CreateFactorOR(binary_variables, negated);
} else if (fields[0] == "OROUT") {
factor = factor_graph->CreateFactorOROUT(binary_variables, negated);
} else if (fields[0] == "ANDOUT") {
factor = factor_graph->CreateFactorANDOUT(binary_variables, negated);
} else if (fields[0] == "BUDGET") {
// Read the budget value.
int budget = atoi(fields[offset+num_links].c_str());
factor = factor_graph->CreateFactorBUDGET(binary_variables, negated, budget);
} else if (fields[0] == "PAIR") {
// If it is a soft factor, read the factor log-potential.
double log_potential = atof(fields[offset+num_links].c_str());
//int r = num_variables + num_factor_log_potentials;
++num_factor_log_potentials;
//static_cast<FactorPAIR*>(factor)->SetGlobalIndex(r);
//static_cast<FactorPAIR*>(factor)->SetFactorLogPotential(log_potential);
factor = factor_graph->CreateFactorPAIR(binary_variables, log_potential);
} else if (fields[0] == "DENSE") {
// Read the number of multi-variables.
int num_multi_variables = atoi(fields[offset+num_links].c_str());
// Read the number of states for each multi-variable.
vector<MultiVariable*> multi_variables(num_multi_variables);
int num_configurations = 1;
int total_states = 0;
for (int k = 0; k < num_multi_variables; ++k) {
int num_states = atoi(fields[offset+num_links+1+k].c_str());
num_configurations *= num_states;
vector<BinaryVariable*> states(binary_variables.begin() + total_states,
binary_variables.begin() + total_states +
num_states);
total_states += num_states;
multi_variables[k] = factor_graph->CreateMultiVariable(states);
}
// Read the additional log-potentials.
vector<double> additional_scores;
for (int index = 0; index < num_configurations; ++index) {
// Read the factor log-potential for this configuration.
double log_potential = atof(fields[offset+num_links+1+num_multi_variables+index].c_str());
additional_scores.push_back(log_potential);
}
// Create the factor and declare it.
factor = new FactorDense;
factor_graph->DeclareFactor(factor, binary_variables, true);
static_cast<FactorDense*>(factor)->Initialize(multi_variables);
factor->SetAdditionalLogPotentials(additional_scores);
num_factor_log_potentials += additional_scores.size();
cout << "Read dense factor." << endl;
} else if (fields[0] == "SEQUENCE") {
// Read the sequence length.
int length = atoi(fields[offset+num_links].c_str());
// Read the number of states for each position in the sequence.
vector<int> num_states(length);
int total_states = 0;
for (int k = 0; k < length; ++k) {
num_states[k] = atoi(fields[offset+num_links+1+k].c_str());
total_states += num_states[k];
}
// Read the additional log-potentials.
vector<double> additional_scores;
int index = 0;
for (int i = 0; i <= length; ++i) {
// If i == 0, the previous state is the start symbol.
int num_previous_states = (i > 0)? num_states[i - 1] : 1;
// If i == length-1, the previous state is the final symbol.
int num_current_states = (i < length)? num_states[i] : 1;
for (int j = 0; j < num_previous_states; ++j) {
for (int k = 0; k < num_current_states; ++k) {
double log_potential = atof(fields[offset+num_links+1+length+index].c_str());
additional_scores.push_back(log_potential);
++index;
}
}
}
if (fields.size() != offset+num_links+1+length+index) {
cout << fields.size() << " "
<< offset+num_links+1+length+index;
assert(false);
}
// Create the factor and declare it.
factor = new FactorSequence;
factor_graph->DeclareFactor(factor, binary_variables, true);
static_cast<FactorSequence*>(factor)->Initialize(num_states);
factor->SetAdditionalLogPotentials(additional_scores);
num_factor_log_potentials += additional_scores.size();
cout << "Read sequence factor." << endl;
} else if (fields[0] == "ARBORESCENCE") {
// Read the sentence length.
int sentence_length = atoi(fields[offset+num_links].c_str());
// Read the arcs.
vector<Arc*> arcs(binary_variables.size());
for (int r = 0; r < binary_variables.size(); ++r) {
//cout << fields.size() << " " << offset+num_links+2*r+1 << endl;
int h = atoi(fields[offset+num_links+1+2*r].c_str());
int m = atoi(fields[offset+num_links+1+2*r+1].c_str());
Arc *arc = new Arc(h, m);
arcs[r] = arc;
}
factor = new FactorTree;
factor_graph->DeclareFactor(factor, binary_variables, true);
static_cast<FactorTree*>(factor)->Initialize(sentence_length, arcs);
for (int r = 0; r < arcs.size(); ++r) {
delete arcs[r];
}
cout << "Read tree factor." << endl;
} else if (fields[0] == "HEAD_AUTOMATON") {
// Read the length of the automaton.
int length = binary_variables.size() + 1;
vector<vector<int> > index_siblings(length, vector<int>(length+1, -1));
int total = 0;
vector<Sibling*> siblings;
vector<double> additional_scores;
for (int m = 0; m < length; ++m) {
for (int s = m+1; s <= length; ++s) {
// Create a fake sibling.
Sibling *sibling = new Sibling(0, m, s);
siblings.push_back(sibling);
// Read the sibling log-potential.
double log_potential = atof(fields[offset+num_links+total].c_str());
additional_scores.push_back(log_potential);
++total;
}
}
factor = new FactorHeadAutomaton;
factor_graph->DeclareFactor(factor, binary_variables, true);
static_cast<FactorHeadAutomaton*>(factor)->Initialize(length, siblings);
for (int r = 0; r < siblings.size(); ++r) {
delete siblings[r];
}
factor->SetAdditionalLogPotentials(additional_scores);
num_factor_log_potentials += additional_scores.size();
cout << "Read head automaton factor." << endl;
} else if (fields[0] == "SEQUENCE_COMPRESSOR") {
// Read the length of the automaton.
int length = binary_variables.size();
vector<vector<int> > index_siblings(length, vector<int>(length+1, -1));
int total = 0;
vector<Sibling*> siblings;
vector<double> additional_scores;
for (int m = 0; m < length; ++m) {
for (int s = m+1; s <= length; ++s) {
// Create a fake sibling.
Sibling *sibling = new Sibling(0, m, s);
siblings.push_back(sibling);
// Read the sibling log-potential.
double log_potential = atof(fields[offset+num_links+total].c_str());
additional_scores.push_back(log_potential);
++total;
}
}
factor = new FactorSequenceCompressor;
factor_graph->DeclareFactor(factor, binary_variables, true);
static_cast<FactorSequenceCompressor*>(factor)->Initialize(length, siblings);
for (int r = 0; r < siblings.size(); ++r) {
delete siblings[r];
}
factor->SetAdditionalLogPotentials(additional_scores);
num_factor_log_potentials += additional_scores.size();
cout << "Read sequence compressor factor." << endl;
} else if (fields[0] == "GRANDPARENT_HEAD_AUTOMATON") {
// Read the number of grandparents.
int num_grandparents = atoi(fields[offset+num_links].c_str());
// Read the length of the automaton.
int length = binary_variables.size() + 1 - num_grandparents;
vector<vector<int> > index_siblings(length, vector<int>(length+1, -1));
int total = 0;
vector<Grandparent*> grandparents;
vector<double> additional_scores;
for (int g = 0; g < num_grandparents; ++g) {
for (int m = 1; m < length; ++m) {
// Create a fake grandparent.
Grandparent *grandparent = new Grandparent(g, 0, m);
grandparents.push_back(grandparent);
// Read the sibling log-potential.
double log_potential = atof(fields[offset+num_links+1+total].c_str());
additional_scores.push_back(log_potential);
++total;
}
}
vector<Sibling*> siblings;
for (int m = 0; m < length; ++m) {
for (int s = m+1; s <= length; ++s) {
// Create a fake sibling.
Sibling *sibling = new Sibling(0, m, s);
siblings.push_back(sibling);
// Read the sibling log-potential.
double log_potential = atof(fields[offset+num_links+1+total].c_str());
additional_scores.push_back(log_potential);
++total;
}
}
factor = new FactorGrandparentHeadAutomaton;
factor_graph->DeclareFactor(factor, binary_variables, true);
static_cast<FactorGrandparentHeadAutomaton*>(factor)->
Initialize(length, num_grandparents, siblings, grandparents);
for (int r = 0; r < grandparents.size(); ++r) {
delete grandparents[r];
}
for (int r = 0; r < siblings.size(); ++r) {
delete siblings[r];
}
factor->SetAdditionalLogPotentials(additional_scores);
num_factor_log_potentials += additional_scores.size();
cout << "Read grandparent head automaton factor." << endl;
} else {
cout << "Unknown factor type: " << fields[0] << endl;
return -1;
}
}
// Read blank line.
getline(file_graph, line);
cout << "Read " << num_variables << " variables and "
<< num_factors << " factors." << endl;
//ofstream file_out("test.fg", ios_base::out);
//factor_graph->Print(file_out);
//file_out.flush();
//file_out.clear();
//file_out.close();
//factor_graph->Initialize(variables, factors, num_messages);
return 0;
}
// This loads a graph in the format of PIC 2011.
int LoadGraphUAI(ifstream &file_graph,
FactorGraph *factor_graph) {
string line = "";
// Read header.
while (line == "") {
getline(file_graph, line);
if (file_graph.eof()) return -1;
TrimComments("#", &line);
Trim("\t ", &line);
}
if (line != "MARKOV") {
cout << "Wrong header: " << line << endl;
return -1;
}
int num_factor_log_potentials = 0;
// Read number of multi-variables.
getline(file_graph, line);
TrimComments("#", &line);
int num_multi_variables = atoi(line.c_str());
vector<MultiVariable*> multi_variables(num_multi_variables);
// Read cardinality of each multi-variable.
getline(file_graph, line);
TrimComments("#", &line);
vector<string> fields;
StringSplit(line, "\t ", &fields);
assert(fields.size() == num_multi_variables);
for (int i = 0; i < num_multi_variables; ++i) {
int num_states = atoi(fields[i].c_str());
MultiVariable* multi_variable =
factor_graph->CreateMultiVariable(num_states);
multi_variables[i] = multi_variable;
}
// Read number of factors (includes unary factors).
getline(file_graph, line);
TrimComments("#", &line);
int num_factors = atoi(line.c_str());
// Read factors (just the structure).
vector<Factor*> factors(num_factors);
vector<MultiVariable*> unary_factors(num_factors);
for (int i = 0; i < num_factors; ++i) {
getline(file_graph, line);
TrimComments("#", &line);
fields.clear();
StringSplit(line, "\t ", &fields);
// Read linked multi-variables.
int num_links = atoi(fields[0].c_str());
int offset = 1;
assert(num_links == fields.size() - offset);
if (num_links == 1) {
// Unary factor; in our formalism this is just a multi-variable.
int k = atoi(fields[offset].c_str());
unary_factors[i] = multi_variables[k];
} else {
vector<MultiVariable*> multi_variables_local(num_links);
for (int j = 0; j < num_links; ++j) {
int k = atoi(fields[offset + j].c_str());
multi_variables_local[j] = multi_variables[k];
}
// For now, set an empty vector of additional log potentials.
vector<double> additional_log_potentials;
Factor *factor =
factor_graph->CreateFactorDense(multi_variables_local,
additional_log_potentials);
factors[i] = factor;
}
}
// Read factors (the log-potentials).
// IMPORTANT: the scores in the UAI files are potentials (not log-potentials!)
for (int i = 0; i < num_factors; ++i) {
Factor *factor = factors[i];
line = "";
while (line == "") {
getline(file_graph, line);
TrimComments("#", &line);
Trim(" \t", &line);
}
int num_configurations = atoi(line.c_str());
if (factor == NULL) {
// Unary factor; in our formalism this is just a multi-variable.
assert(unary_factors[i] != NULL);
MultiVariable *multi_variable = unary_factors[i];
int index = 0;
assert(num_configurations == multi_variable->GetNumStates());
while (index < num_configurations) {
getline(file_graph, line);
TrimComments("#", &line);
Trim(" \t", &line);
fields.clear();
StringSplit(line, "\t ", &fields);
for (int j = 0; j < fields.size(); ++j) {
double log_potential = LOG_STABLE(atof(fields[j].c_str()));
multi_variable->SetLogPotential(index, log_potential);
assert(index < num_configurations);
++index;
}
}
} else {
int num_links = static_cast<FactorDense*>(factor)->
GetNumMultiVariables();
int index = 0;
assert(num_configurations ==
static_cast<FactorDense*>(factor)->GetNumConfigurations());
//int r = factor_graph->GetNumVariables() + num_factor_log_potentials;
num_factor_log_potentials += num_configurations;
//static_cast<FactorMultiDense*>(factor)->SetFirstGlobalIndex(r);
vector<double> additional_log_potentials(num_configurations);
while (index < num_configurations) {
getline(file_graph, line);
TrimComments("#", &line);
Trim(" \t", &line);
fields.clear();
StringSplit(line, "\t ", &fields);
for (int j = 0; j < fields.size(); ++j) {
double log_potential = LOG_STABLE(atof(fields[j].c_str()));
additional_log_potentials[index] = log_potential;
assert(index < num_configurations);
++index;
}
}
factor->SetAdditionalLogPotentials(additional_log_potentials);
}
}
cout << "Read " << num_multi_variables << " multi-variables and "
<< num_factors << " factors." << endl;
return 0;
}