-
-
Notifications
You must be signed in to change notification settings - Fork 30.9k
/
Copy pathobject.c
2940 lines (2596 loc) · 78.7 KB
/
object.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* Generic object operations; and implementation of None */
#include "Python.h"
#include "pycore_call.h" // _PyObject_CallNoArgs()
#include "pycore_ceval.h" // _Py_EnterRecursiveCallTstate()
#include "pycore_context.h" // _PyContextTokenMissing_Type
#include "pycore_descrobject.h" // _PyMethodWrapper_Type
#include "pycore_dict.h" // _PyObject_MakeDictFromInstanceAttributes()
#include "pycore_floatobject.h" // _PyFloat_DebugMallocStats()
#include "pycore_initconfig.h" // _PyStatus_EXCEPTION()
#include "pycore_hashtable.h" // _Py_hashtable_new()
#include "pycore_memoryobject.h" // _PyManagedBuffer_Type
#include "pycore_namespace.h" // _PyNamespace_Type
#include "pycore_object.h" // PyAPI_DATA() _Py_SwappedOp definition
#include "pycore_optimizer.h" // _PyUOpExecutor_Type, _PyUOpOptimizer_Type, ...
#include "pycore_pyerrors.h" // _PyErr_Occurred()
#include "pycore_pymem.h" // _PyMem_IsPtrFreed()
#include "pycore_pystate.h" // _PyThreadState_GET()
#include "pycore_symtable.h" // PySTEntry_Type
#include "pycore_typeobject.h" // _PyBufferWrapper_Type
#include "pycore_typevarobject.h" // _PyTypeAlias_Type, _Py_initialize_generic
#include "pycore_unionobject.h" // _PyUnion_Type
#include "interpreteridobject.h" // _PyInterpreterID_Type
#ifdef Py_LIMITED_API
// Prevent recursive call _Py_IncRef() <=> Py_INCREF()
# error "Py_LIMITED_API macro must not be defined"
#endif
/* Defined in tracemalloc.c */
extern void _PyMem_DumpTraceback(int fd, const void *ptr);
int
_PyObject_CheckConsistency(PyObject *op, int check_content)
{
#define CHECK(expr) \
do { if (!(expr)) { _PyObject_ASSERT_FAILED_MSG(op, Py_STRINGIFY(expr)); } } while (0)
CHECK(!_PyObject_IsFreed(op));
CHECK(Py_REFCNT(op) >= 1);
_PyType_CheckConsistency(Py_TYPE(op));
if (PyUnicode_Check(op)) {
_PyUnicode_CheckConsistency(op, check_content);
}
else if (PyDict_Check(op)) {
_PyDict_CheckConsistency(op, check_content);
}
return 1;
#undef CHECK
}
#ifdef Py_REF_DEBUG
/* We keep the legacy symbol around for backward compatibility. */
Py_ssize_t _Py_RefTotal;
static inline Py_ssize_t
get_legacy_reftotal(void)
{
return _Py_RefTotal;
}
#endif
#ifdef Py_REF_DEBUG
# define REFTOTAL(interp) \
interp->object_state.reftotal
static inline void
reftotal_increment(PyInterpreterState *interp)
{
REFTOTAL(interp)++;
}
static inline void
reftotal_decrement(PyInterpreterState *interp)
{
REFTOTAL(interp)--;
}
static inline void
reftotal_add(PyInterpreterState *interp, Py_ssize_t n)
{
REFTOTAL(interp) += n;
}
static inline Py_ssize_t get_global_reftotal(_PyRuntimeState *);
/* We preserve the number of refs leaked during runtime finalization,
so they can be reported if the runtime is initialized again. */
// XXX We don't lose any information by dropping this,
// so we should consider doing so.
static Py_ssize_t last_final_reftotal = 0;
void
_Py_FinalizeRefTotal(_PyRuntimeState *runtime)
{
last_final_reftotal = get_global_reftotal(runtime);
runtime->object_state.interpreter_leaks = 0;
}
void
_PyInterpreterState_FinalizeRefTotal(PyInterpreterState *interp)
{
interp->runtime->object_state.interpreter_leaks += REFTOTAL(interp);
REFTOTAL(interp) = 0;
}
static inline Py_ssize_t
get_reftotal(PyInterpreterState *interp)
{
/* For a single interpreter, we ignore the legacy _Py_RefTotal,
since we can't determine which interpreter updated it. */
return REFTOTAL(interp);
}
static inline Py_ssize_t
get_global_reftotal(_PyRuntimeState *runtime)
{
Py_ssize_t total = 0;
/* Add up the total from each interpreter. */
HEAD_LOCK(&_PyRuntime);
PyInterpreterState *interp = PyInterpreterState_Head();
for (; interp != NULL; interp = PyInterpreterState_Next(interp)) {
total += REFTOTAL(interp);
}
HEAD_UNLOCK(&_PyRuntime);
/* Add in the updated value from the legacy _Py_RefTotal. */
total += get_legacy_reftotal();
total += last_final_reftotal;
total += runtime->object_state.interpreter_leaks;
return total;
}
#undef REFTOTAL
void
_PyDebug_PrintTotalRefs(void) {
_PyRuntimeState *runtime = &_PyRuntime;
fprintf(stderr,
"[%zd refs, %zd blocks]\n",
get_global_reftotal(runtime), _Py_GetGlobalAllocatedBlocks());
/* It may be helpful to also print the "legacy" reftotal separately.
Likewise for the total for each interpreter. */
}
#endif /* Py_REF_DEBUG */
/* Object allocation routines used by NEWOBJ and NEWVAROBJ macros.
These are used by the individual routines for object creation.
Do not call them otherwise, they do not initialize the object! */
#ifdef Py_TRACE_REFS
#define REFCHAIN(interp) interp->object_state.refchain
#define REFCHAIN_VALUE ((void*)(uintptr_t)1)
bool
_PyRefchain_IsTraced(PyInterpreterState *interp, PyObject *obj)
{
return (_Py_hashtable_get(REFCHAIN(interp), obj) == REFCHAIN_VALUE);
}
static void
_PyRefchain_Trace(PyInterpreterState *interp, PyObject *obj)
{
if (_Py_hashtable_set(REFCHAIN(interp), obj, REFCHAIN_VALUE) < 0) {
// Use a fatal error because _Py_NewReference() cannot report
// the error to the caller.
Py_FatalError("_Py_hashtable_set() memory allocation failed");
}
}
static void
_PyRefchain_Remove(PyInterpreterState *interp, PyObject *obj)
{
void *value = _Py_hashtable_steal(REFCHAIN(interp), obj);
#ifndef NDEBUG
assert(value == REFCHAIN_VALUE);
#else
(void)value;
#endif
}
/* Add an object to the refchain hash table.
*
* Note that objects are normally added to the list by PyObject_Init()
* indirectly. Not all objects are initialized that way, though; exceptions
* include statically allocated type objects, and statically allocated
* singletons (like Py_True and Py_None). */
void
_Py_AddToAllObjects(PyObject *op)
{
PyInterpreterState *interp = _PyInterpreterState_GET();
if (!_PyRefchain_IsTraced(interp, op)) {
_PyRefchain_Trace(interp, op);
}
}
#endif /* Py_TRACE_REFS */
#ifdef Py_REF_DEBUG
/* Log a fatal error; doesn't return. */
void
_Py_NegativeRefcount(const char *filename, int lineno, PyObject *op)
{
_PyObject_AssertFailed(op, NULL, "object has negative ref count",
filename, lineno, __func__);
}
/* This is used strictly by Py_INCREF(). */
void
_Py_INCREF_IncRefTotal(void)
{
reftotal_increment(_PyInterpreterState_GET());
}
/* This is used strictly by Py_DECREF(). */
void
_Py_DECREF_DecRefTotal(void)
{
reftotal_decrement(_PyInterpreterState_GET());
}
void
_Py_IncRefTotal(PyInterpreterState *interp)
{
reftotal_increment(interp);
}
void
_Py_DecRefTotal(PyInterpreterState *interp)
{
reftotal_decrement(interp);
}
void
_Py_AddRefTotal(PyInterpreterState *interp, Py_ssize_t n)
{
reftotal_add(interp, n);
}
/* This includes the legacy total
and any carried over from the last runtime init/fini cycle. */
Py_ssize_t
_Py_GetGlobalRefTotal(void)
{
return get_global_reftotal(&_PyRuntime);
}
Py_ssize_t
_Py_GetLegacyRefTotal(void)
{
return get_legacy_reftotal();
}
Py_ssize_t
_PyInterpreterState_GetRefTotal(PyInterpreterState *interp)
{
return get_reftotal(interp);
}
#endif /* Py_REF_DEBUG */
void
Py_IncRef(PyObject *o)
{
Py_XINCREF(o);
}
void
Py_DecRef(PyObject *o)
{
Py_XDECREF(o);
}
void
_Py_IncRef(PyObject *o)
{
Py_INCREF(o);
}
void
_Py_DecRef(PyObject *o)
{
Py_DECREF(o);
}
#ifdef Py_GIL_DISABLED
# ifdef Py_REF_DEBUG
static inline int
is_shared_refcnt_dead(Py_ssize_t shared)
{
# if SIZEOF_SIZE_T == 8
return shared == (Py_ssize_t)0xDDDDDDDDDDDDDDDD;
# else
return shared == (Py_ssize_t)0xDDDDDDDD;
# endif
}
# endif
void
_Py_DecRefSharedDebug(PyObject *o, const char *filename, int lineno)
{
// Should we queue the object for the owning thread to merge?
int should_queue;
Py_ssize_t new_shared;
Py_ssize_t shared = _Py_atomic_load_ssize_relaxed(&o->ob_ref_shared);
do {
should_queue = (shared == 0 || shared == _Py_REF_MAYBE_WEAKREF);
if (should_queue) {
// If the object had refcount zero, not queued, and not merged,
// then we enqueue the object to be merged by the owning thread.
// In this case, we don't subtract one from the reference count
// because the queue holds a reference.
new_shared = _Py_REF_QUEUED;
}
else {
// Otherwise, subtract one from the reference count. This might
// be negative!
new_shared = shared - (1 << _Py_REF_SHARED_SHIFT);
}
#ifdef Py_REF_DEBUG
if ((_Py_REF_IS_MERGED(new_shared) && new_shared < 0) ||
is_shared_refcnt_dead(shared))
{
_Py_NegativeRefcount(filename, lineno, o);
}
#endif
} while (!_Py_atomic_compare_exchange_ssize(&o->ob_ref_shared,
&shared, new_shared));
if (should_queue) {
// TODO: the inter-thread queue is not yet implemented. For now,
// we just merge the refcount here.
Py_ssize_t refcount = _Py_ExplicitMergeRefcount(o, -1);
if (refcount == 0) {
_Py_Dealloc(o);
}
}
else if (new_shared == _Py_REF_MERGED) {
// refcount is zero AND merged
_Py_Dealloc(o);
}
}
void
_Py_DecRefShared(PyObject *o)
{
_Py_DecRefSharedDebug(o, NULL, 0);
}
void
_Py_MergeZeroLocalRefcount(PyObject *op)
{
assert(op->ob_ref_local == 0);
_Py_atomic_store_uintptr_relaxed(&op->ob_tid, 0);
Py_ssize_t shared = _Py_atomic_load_ssize_relaxed(&op->ob_ref_shared);
if (shared == 0) {
// Fast-path: shared refcount is zero (including flags)
_Py_Dealloc(op);
return;
}
// Slow-path: atomically set the flags (low two bits) to _Py_REF_MERGED.
Py_ssize_t new_shared;
do {
new_shared = (shared & ~_Py_REF_SHARED_FLAG_MASK) | _Py_REF_MERGED;
} while (!_Py_atomic_compare_exchange_ssize(&op->ob_ref_shared,
&shared, new_shared));
if (new_shared == _Py_REF_MERGED) {
// i.e., the shared refcount is zero (only the flags are set) so we
// deallocate the object.
_Py_Dealloc(op);
}
}
Py_ssize_t
_Py_ExplicitMergeRefcount(PyObject *op, Py_ssize_t extra)
{
assert(!_Py_IsImmortal(op));
Py_ssize_t refcnt;
Py_ssize_t new_shared;
Py_ssize_t shared = _Py_atomic_load_ssize_relaxed(&op->ob_ref_shared);
do {
refcnt = Py_ARITHMETIC_RIGHT_SHIFT(Py_ssize_t, shared, _Py_REF_SHARED_SHIFT);
if (_Py_REF_IS_MERGED(shared)) {
return refcnt;
}
refcnt += (Py_ssize_t)op->ob_ref_local;
refcnt += extra;
new_shared = _Py_REF_SHARED(refcnt, _Py_REF_MERGED);
} while (!_Py_atomic_compare_exchange_ssize(&op->ob_ref_shared,
&shared, new_shared));
_Py_atomic_store_uint32_relaxed(&op->ob_ref_local, 0);
_Py_atomic_store_uintptr_relaxed(&op->ob_tid, 0);
return refcnt;
}
#endif /* Py_GIL_DISABLED */
/**************************************/
PyObject *
PyObject_Init(PyObject *op, PyTypeObject *tp)
{
if (op == NULL) {
return PyErr_NoMemory();
}
_PyObject_Init(op, tp);
return op;
}
PyVarObject *
PyObject_InitVar(PyVarObject *op, PyTypeObject *tp, Py_ssize_t size)
{
if (op == NULL) {
return (PyVarObject *) PyErr_NoMemory();
}
_PyObject_InitVar(op, tp, size);
return op;
}
PyObject *
_PyObject_New(PyTypeObject *tp)
{
PyObject *op = (PyObject *) PyObject_Malloc(_PyObject_SIZE(tp));
if (op == NULL) {
return PyErr_NoMemory();
}
_PyObject_Init(op, tp);
return op;
}
PyVarObject *
_PyObject_NewVar(PyTypeObject *tp, Py_ssize_t nitems)
{
PyVarObject *op;
const size_t size = _PyObject_VAR_SIZE(tp, nitems);
op = (PyVarObject *) PyObject_Malloc(size);
if (op == NULL) {
return (PyVarObject *)PyErr_NoMemory();
}
_PyObject_InitVar(op, tp, nitems);
return op;
}
void
PyObject_CallFinalizer(PyObject *self)
{
PyTypeObject *tp = Py_TYPE(self);
if (tp->tp_finalize == NULL)
return;
/* tp_finalize should only be called once. */
if (_PyType_IS_GC(tp) && _PyGC_FINALIZED(self))
return;
tp->tp_finalize(self);
if (_PyType_IS_GC(tp)) {
_PyGC_SET_FINALIZED(self);
}
}
int
PyObject_CallFinalizerFromDealloc(PyObject *self)
{
if (Py_REFCNT(self) != 0) {
_PyObject_ASSERT_FAILED_MSG(self,
"PyObject_CallFinalizerFromDealloc called "
"on object with a non-zero refcount");
}
/* Temporarily resurrect the object. */
Py_SET_REFCNT(self, 1);
PyObject_CallFinalizer(self);
_PyObject_ASSERT_WITH_MSG(self,
Py_REFCNT(self) > 0,
"refcount is too small");
/* Undo the temporary resurrection; can't use DECREF here, it would
* cause a recursive call. */
Py_SET_REFCNT(self, Py_REFCNT(self) - 1);
if (Py_REFCNT(self) == 0) {
return 0; /* this is the normal path out */
}
/* tp_finalize resurrected it! Make it look like the original Py_DECREF
* never happened. */
Py_ssize_t refcnt = Py_REFCNT(self);
_Py_NewReferenceNoTotal(self);
Py_SET_REFCNT(self, refcnt);
_PyObject_ASSERT(self,
(!_PyType_IS_GC(Py_TYPE(self))
|| _PyObject_GC_IS_TRACKED(self)));
return -1;
}
int
PyObject_Print(PyObject *op, FILE *fp, int flags)
{
int ret = 0;
if (PyErr_CheckSignals())
return -1;
#ifdef USE_STACKCHECK
if (PyOS_CheckStack()) {
PyErr_SetString(PyExc_MemoryError, "stack overflow");
return -1;
}
#endif
clearerr(fp); /* Clear any previous error condition */
if (op == NULL) {
Py_BEGIN_ALLOW_THREADS
fprintf(fp, "<nil>");
Py_END_ALLOW_THREADS
}
else {
if (Py_REFCNT(op) <= 0) {
Py_BEGIN_ALLOW_THREADS
fprintf(fp, "<refcnt %zd at %p>", Py_REFCNT(op), (void *)op);
Py_END_ALLOW_THREADS
}
else {
PyObject *s;
if (flags & Py_PRINT_RAW)
s = PyObject_Str(op);
else
s = PyObject_Repr(op);
if (s == NULL) {
ret = -1;
}
else {
assert(PyUnicode_Check(s));
const char *t;
Py_ssize_t len;
t = PyUnicode_AsUTF8AndSize(s, &len);
if (t == NULL) {
ret = -1;
}
else {
fwrite(t, 1, len, fp);
}
Py_DECREF(s);
}
}
}
if (ret == 0) {
if (ferror(fp)) {
PyErr_SetFromErrno(PyExc_OSError);
clearerr(fp);
ret = -1;
}
}
return ret;
}
/* For debugging convenience. Set a breakpoint here and call it from your DLL */
void
_Py_BreakPoint(void)
{
}
/* Heuristic checking if the object memory is uninitialized or deallocated.
Rely on the debug hooks on Python memory allocators:
see _PyMem_IsPtrFreed().
The function can be used to prevent segmentation fault on dereferencing
pointers like 0xDDDDDDDDDDDDDDDD. */
int
_PyObject_IsFreed(PyObject *op)
{
if (_PyMem_IsPtrFreed(op) || _PyMem_IsPtrFreed(Py_TYPE(op))) {
return 1;
}
return 0;
}
/* For debugging convenience. See Misc/gdbinit for some useful gdb hooks */
void
_PyObject_Dump(PyObject* op)
{
if (_PyObject_IsFreed(op)) {
/* It seems like the object memory has been freed:
don't access it to prevent a segmentation fault. */
fprintf(stderr, "<object at %p is freed>\n", op);
fflush(stderr);
return;
}
/* first, write fields which are the least likely to crash */
fprintf(stderr, "object address : %p\n", (void *)op);
fprintf(stderr, "object refcount : %zd\n", Py_REFCNT(op));
fflush(stderr);
PyTypeObject *type = Py_TYPE(op);
fprintf(stderr, "object type : %p\n", type);
fprintf(stderr, "object type name: %s\n",
type==NULL ? "NULL" : type->tp_name);
/* the most dangerous part */
fprintf(stderr, "object repr : ");
fflush(stderr);
PyGILState_STATE gil = PyGILState_Ensure();
PyObject *exc = PyErr_GetRaisedException();
(void)PyObject_Print(op, stderr, 0);
fflush(stderr);
PyErr_SetRaisedException(exc);
PyGILState_Release(gil);
fprintf(stderr, "\n");
fflush(stderr);
}
PyObject *
PyObject_Repr(PyObject *v)
{
PyObject *res;
if (PyErr_CheckSignals())
return NULL;
#ifdef USE_STACKCHECK
if (PyOS_CheckStack()) {
PyErr_SetString(PyExc_MemoryError, "stack overflow");
return NULL;
}
#endif
if (v == NULL)
return PyUnicode_FromString("<NULL>");
if (Py_TYPE(v)->tp_repr == NULL)
return PyUnicode_FromFormat("<%s object at %p>",
Py_TYPE(v)->tp_name, v);
PyThreadState *tstate = _PyThreadState_GET();
#ifdef Py_DEBUG
/* PyObject_Repr() must not be called with an exception set,
because it can clear it (directly or indirectly) and so the
caller loses its exception */
assert(!_PyErr_Occurred(tstate));
#endif
/* It is possible for a type to have a tp_repr representation that loops
infinitely. */
if (_Py_EnterRecursiveCallTstate(tstate,
" while getting the repr of an object")) {
return NULL;
}
res = (*Py_TYPE(v)->tp_repr)(v);
_Py_LeaveRecursiveCallTstate(tstate);
if (res == NULL) {
return NULL;
}
if (!PyUnicode_Check(res)) {
_PyErr_Format(tstate, PyExc_TypeError,
"__repr__ returned non-string (type %.200s)",
Py_TYPE(res)->tp_name);
Py_DECREF(res);
return NULL;
}
return res;
}
PyObject *
PyObject_Str(PyObject *v)
{
PyObject *res;
if (PyErr_CheckSignals())
return NULL;
#ifdef USE_STACKCHECK
if (PyOS_CheckStack()) {
PyErr_SetString(PyExc_MemoryError, "stack overflow");
return NULL;
}
#endif
if (v == NULL)
return PyUnicode_FromString("<NULL>");
if (PyUnicode_CheckExact(v)) {
return Py_NewRef(v);
}
if (Py_TYPE(v)->tp_str == NULL)
return PyObject_Repr(v);
PyThreadState *tstate = _PyThreadState_GET();
#ifdef Py_DEBUG
/* PyObject_Str() must not be called with an exception set,
because it can clear it (directly or indirectly) and so the
caller loses its exception */
assert(!_PyErr_Occurred(tstate));
#endif
/* It is possible for a type to have a tp_str representation that loops
infinitely. */
if (_Py_EnterRecursiveCallTstate(tstate, " while getting the str of an object")) {
return NULL;
}
res = (*Py_TYPE(v)->tp_str)(v);
_Py_LeaveRecursiveCallTstate(tstate);
if (res == NULL) {
return NULL;
}
if (!PyUnicode_Check(res)) {
_PyErr_Format(tstate, PyExc_TypeError,
"__str__ returned non-string (type %.200s)",
Py_TYPE(res)->tp_name);
Py_DECREF(res);
return NULL;
}
assert(_PyUnicode_CheckConsistency(res, 1));
return res;
}
PyObject *
PyObject_ASCII(PyObject *v)
{
PyObject *repr, *ascii, *res;
repr = PyObject_Repr(v);
if (repr == NULL)
return NULL;
if (PyUnicode_IS_ASCII(repr))
return repr;
/* repr is guaranteed to be a PyUnicode object by PyObject_Repr */
ascii = _PyUnicode_AsASCIIString(repr, "backslashreplace");
Py_DECREF(repr);
if (ascii == NULL)
return NULL;
res = PyUnicode_DecodeASCII(
PyBytes_AS_STRING(ascii),
PyBytes_GET_SIZE(ascii),
NULL);
Py_DECREF(ascii);
return res;
}
PyObject *
PyObject_Bytes(PyObject *v)
{
PyObject *result, *func;
if (v == NULL)
return PyBytes_FromString("<NULL>");
if (PyBytes_CheckExact(v)) {
return Py_NewRef(v);
}
func = _PyObject_LookupSpecial(v, &_Py_ID(__bytes__));
if (func != NULL) {
result = _PyObject_CallNoArgs(func);
Py_DECREF(func);
if (result == NULL)
return NULL;
if (!PyBytes_Check(result)) {
PyErr_Format(PyExc_TypeError,
"__bytes__ returned non-bytes (type %.200s)",
Py_TYPE(result)->tp_name);
Py_DECREF(result);
return NULL;
}
return result;
}
else if (PyErr_Occurred())
return NULL;
return PyBytes_FromObject(v);
}
/*
def _PyObject_FunctionStr(x):
try:
qualname = x.__qualname__
except AttributeError:
return str(x)
try:
mod = x.__module__
if mod is not None and mod != 'builtins':
return f"{x.__module__}.{qualname}()"
except AttributeError:
pass
return qualname
*/
PyObject *
_PyObject_FunctionStr(PyObject *x)
{
assert(!PyErr_Occurred());
PyObject *qualname;
int ret = PyObject_GetOptionalAttr(x, &_Py_ID(__qualname__), &qualname);
if (qualname == NULL) {
if (ret < 0) {
return NULL;
}
return PyObject_Str(x);
}
PyObject *module;
PyObject *result = NULL;
ret = PyObject_GetOptionalAttr(x, &_Py_ID(__module__), &module);
if (module != NULL && module != Py_None) {
ret = PyObject_RichCompareBool(module, &_Py_ID(builtins), Py_NE);
if (ret < 0) {
// error
goto done;
}
if (ret > 0) {
result = PyUnicode_FromFormat("%S.%S()", module, qualname);
goto done;
}
}
else if (ret < 0) {
goto done;
}
result = PyUnicode_FromFormat("%S()", qualname);
done:
Py_DECREF(qualname);
Py_XDECREF(module);
return result;
}
/* For Python 3.0.1 and later, the old three-way comparison has been
completely removed in favour of rich comparisons. PyObject_Compare() and
PyObject_Cmp() are gone, and the builtin cmp function no longer exists.
The old tp_compare slot has been renamed to tp_as_async, and should no
longer be used. Use tp_richcompare instead.
See (*) below for practical amendments.
tp_richcompare gets called with a first argument of the appropriate type
and a second object of an arbitrary type. We never do any kind of
coercion.
The tp_richcompare slot should return an object, as follows:
NULL if an exception occurred
NotImplemented if the requested comparison is not implemented
any other false value if the requested comparison is false
any other true value if the requested comparison is true
The PyObject_RichCompare[Bool]() wrappers raise TypeError when they get
NotImplemented.
(*) Practical amendments:
- If rich comparison returns NotImplemented, == and != are decided by
comparing the object pointer (i.e. falling back to the base object
implementation).
*/
/* Map rich comparison operators to their swapped version, e.g. LT <--> GT */
int _Py_SwappedOp[] = {Py_GT, Py_GE, Py_EQ, Py_NE, Py_LT, Py_LE};
static const char * const opstrings[] = {"<", "<=", "==", "!=", ">", ">="};
/* Perform a rich comparison, raising TypeError when the requested comparison
operator is not supported. */
static PyObject *
do_richcompare(PyThreadState *tstate, PyObject *v, PyObject *w, int op)
{
richcmpfunc f;
PyObject *res;
int checked_reverse_op = 0;
if (!Py_IS_TYPE(v, Py_TYPE(w)) &&
PyType_IsSubtype(Py_TYPE(w), Py_TYPE(v)) &&
(f = Py_TYPE(w)->tp_richcompare) != NULL) {
checked_reverse_op = 1;
res = (*f)(w, v, _Py_SwappedOp[op]);
if (res != Py_NotImplemented)
return res;
Py_DECREF(res);
}
if ((f = Py_TYPE(v)->tp_richcompare) != NULL) {
res = (*f)(v, w, op);
if (res != Py_NotImplemented)
return res;
Py_DECREF(res);
}
if (!checked_reverse_op && (f = Py_TYPE(w)->tp_richcompare) != NULL) {
res = (*f)(w, v, _Py_SwappedOp[op]);
if (res != Py_NotImplemented)
return res;
Py_DECREF(res);
}
/* If neither object implements it, provide a sensible default
for == and !=, but raise an exception for ordering. */
switch (op) {
case Py_EQ:
res = (v == w) ? Py_True : Py_False;
break;
case Py_NE:
res = (v != w) ? Py_True : Py_False;
break;
default:
_PyErr_Format(tstate, PyExc_TypeError,
"'%s' not supported between instances of '%.100s' and '%.100s'",
opstrings[op],
Py_TYPE(v)->tp_name,
Py_TYPE(w)->tp_name);
return NULL;
}
return Py_NewRef(res);
}
/* Perform a rich comparison with object result. This wraps do_richcompare()
with a check for NULL arguments and a recursion check. */
PyObject *
PyObject_RichCompare(PyObject *v, PyObject *w, int op)
{
PyThreadState *tstate = _PyThreadState_GET();
assert(Py_LT <= op && op <= Py_GE);
if (v == NULL || w == NULL) {
if (!_PyErr_Occurred(tstate)) {
PyErr_BadInternalCall();
}
return NULL;
}
if (_Py_EnterRecursiveCallTstate(tstate, " in comparison")) {
return NULL;
}
PyObject *res = do_richcompare(tstate, v, w, op);
_Py_LeaveRecursiveCallTstate(tstate);
return res;
}
/* Perform a rich comparison with integer result. This wraps
PyObject_RichCompare(), returning -1 for error, 0 for false, 1 for true. */
int
PyObject_RichCompareBool(PyObject *v, PyObject *w, int op)
{
PyObject *res;
int ok;
/* Quick result when objects are the same.
Guarantees that identity implies equality. */
if (v == w) {
if (op == Py_EQ)
return 1;
else if (op == Py_NE)
return 0;
}
res = PyObject_RichCompare(v, w, op);
if (res == NULL)
return -1;
if (PyBool_Check(res))
ok = (res == Py_True);
else
ok = PyObject_IsTrue(res);
Py_DECREF(res);
return ok;
}
Py_hash_t
PyObject_HashNotImplemented(PyObject *v)
{
PyErr_Format(PyExc_TypeError, "unhashable type: '%.200s'",
Py_TYPE(v)->tp_name);
return -1;
}
Py_hash_t
PyObject_Hash(PyObject *v)
{
PyTypeObject *tp = Py_TYPE(v);
if (tp->tp_hash != NULL)
return (*tp->tp_hash)(v);
/* To keep to the general practice that inheriting