-
Notifications
You must be signed in to change notification settings - Fork 666
/
Copy pathmain.py
659 lines (552 loc) · 18.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
import argparse
import logging
import os
import string
from datetime import datetime
from time import time
import torch
import torchaudio
from torch.optim import SGD, Adadelta, Adam, AdamW
from torch.optim.lr_scheduler import ExponentialLR, ReduceLROnPlateau
from torch.utils.data import DataLoader
from torchaudio.datasets.utils import bg_iterator
from torchaudio.models.wav2letter import Wav2Letter
from ctc_decoders import GreedyDecoder
from datasets import collate_factory, split_process_librispeech
from languagemodels import LanguageModel
from metrics import levenshtein_distance
from transforms import Normalize, UnsqueezeFirst
from utils import MetricLogger, count_parameters, save_checkpoint
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--type",
metavar="T",
default="mfcc",
choices=["waveform", "mfcc"],
help="input type for model",
)
parser.add_argument(
"--freq-mask",
default=0,
type=int,
metavar="N",
help="maximal width of frequency mask",
)
parser.add_argument(
"--win-length",
default=400,
type=int,
metavar="N",
help="width of spectrogram window",
)
parser.add_argument(
"--hop-length",
default=160,
type=int,
metavar="N",
help="width of spectrogram window",
)
parser.add_argument(
"--time-mask",
default=0,
type=int,
metavar="N",
help="maximal width of time mask",
)
parser.add_argument(
"--workers",
default=0,
type=int,
metavar="N",
help="number of data loading workers",
)
parser.add_argument(
"--checkpoint",
default="",
type=str,
metavar="PATH",
help="path to latest checkpoint",
)
parser.add_argument(
"--epochs",
default=200,
type=int,
metavar="N",
help="number of total epochs to run",
)
parser.add_argument(
"--start-epoch", default=0, type=int, metavar="N", help="manual epoch number"
)
parser.add_argument(
"--reduce-lr-valid",
action="store_true",
help="reduce learning rate based on validation loss",
)
parser.add_argument(
"--normalize", action="store_true", help="normalize model input"
)
parser.add_argument(
"--progress-bar", action="store_true", help="use progress bar while training"
)
parser.add_argument(
"--decoder",
metavar="D",
default="greedy",
choices=["greedy"],
help="decoder to use",
)
parser.add_argument(
"--batch-size", default=128, type=int, metavar="N", help="mini-batch size"
)
parser.add_argument(
"--n-bins",
default=13,
type=int,
metavar="N",
help="number of bins in transforms",
)
parser.add_argument(
"--optimizer",
metavar="OPT",
default="adadelta",
choices=["sgd", "adadelta", "adam", "adamw"],
help="optimizer to use",
)
parser.add_argument(
"--scheduler",
metavar="S",
default="reduceonplateau",
choices=["exponential", "reduceonplateau"],
help="optimizer to use",
)
parser.add_argument(
"--learning-rate",
default=0.6,
type=float,
metavar="LR",
help="initial learning rate",
)
parser.add_argument(
"--gamma",
default=0.99,
type=float,
metavar="GAMMA",
help="learning rate exponential decay constant",
)
parser.add_argument(
"--momentum", default=0.8, type=float, metavar="M", help="momentum"
)
parser.add_argument(
"--weight-decay", default=1e-5, type=float, metavar="W", help="weight decay"
)
parser.add_argument("--eps", metavar="EPS", type=float, default=1e-8)
parser.add_argument("--rho", metavar="RHO", type=float, default=0.95)
parser.add_argument("--clip-grad", metavar="NORM", type=float, default=0.0)
parser.add_argument(
"--dataset-root",
type=str,
help="specify dataset root folder",
)
parser.add_argument(
"--dataset-folder-in-archive",
type=str,
help="specify dataset folder in archive",
)
parser.add_argument(
"--dataset-train",
default=["train-clean-100"],
nargs="+",
type=str,
help="select which part of librispeech to train with",
)
parser.add_argument(
"--dataset-valid",
default=["dev-clean"],
nargs="+",
type=str,
help="select which part of librispeech to validate with",
)
parser.add_argument(
"--distributed", action="store_true", help="enable DistributedDataParallel"
)
parser.add_argument("--seed", type=int, default=0, help="random seed")
parser.add_argument(
"--world-size", type=int, default=8, help="the world size to initiate DPP"
)
parser.add_argument("--jit", action="store_true", help="if used, model is jitted")
args = parser.parse_args()
logging.info(args)
return args
def setup_distributed(rank, world_size):
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = "12355"
# initialize the process group
torch.distributed.init_process_group("nccl", rank=rank, world_size=world_size)
def model_length_function(tensor):
if tensor.shape[1] == 1:
# waveform mode
return int(tensor.shape[0]) // 160 // 2 + 1
return int(tensor.shape[0]) // 2 + 1
def compute_error_rates(outputs, targets, decoder, language_model, metric):
output = outputs.transpose(0, 1).to("cpu")
output = decoder(output)
# Compute CER
output = language_model.decode(output.tolist())
target = language_model.decode(targets.tolist())
print_length = 20
for i in range(2):
# Print a few examples
output_print = output[i].ljust(print_length)[:print_length]
target_print = target[i].ljust(print_length)[:print_length]
logging.info("Target: %s Output: %s", target_print, output_print)
cers = [levenshtein_distance(t, o) for t, o in zip(target, output)]
cers = sum(cers)
n = sum(len(t) for t in target)
metric["cer over target length"] = cers / n
metric["cumulative cer"] += cers
metric["total chars"] += n
metric["cumulative cer over target length"] = metric["cer"] / metric["total chars"]
# Compute WER
output = [o.split(language_model.char_space) for o in output]
target = [t.split(language_model.char_space) for t in target]
wers = [levenshtein_distance(t, o) for t, o in zip(target, output)]
wers = sum(wers)
n = sum(len(t) for t in target)
metric["wer over target length"] = wers / n
metric["cumulative wer"] += wers
metric["total words"] += n
metric["cumulative wer over target length"] = metric["wer"] / metric["total words"]
def train_one_epoch(
model,
criterion,
optimizer,
scheduler,
data_loader,
decoder,
language_model,
device,
epoch,
clip_grad,
disable_logger=False,
reduce_lr_on_plateau=False,
):
model.train()
metric = MetricLogger("train", disable=disable_logger)
metric["epoch"] = epoch
for inputs, targets, tensors_lengths, target_lengths in bg_iterator(
data_loader, maxsize=2
):
start = time()
inputs = inputs.to(device, non_blocking=True)
targets = targets.to(device, non_blocking=True)
# keep batch first for data parallel
outputs = model(inputs).transpose(-1, -2).transpose(0, 1)
# CTC
# outputs: input length, batch size, number of classes (including blank)
# targets: batch size, max target length
# input_lengths: batch size
# target_lengths: batch size
loss = criterion(outputs, targets, tensors_lengths, target_lengths)
optimizer.zero_grad()
loss.backward()
if clip_grad > 0:
metric["gradient"] = torch.nn.utils.clip_grad_norm_(
model.parameters(), clip_grad
)
optimizer.step()
compute_error_rates(outputs, targets, decoder, language_model, metric)
try:
metric["lr"] = scheduler.get_last_lr()[0]
except AttributeError:
metric["lr"] = optimizer.param_groups[0]["lr"]
metric["batch size"] = len(inputs)
metric["n_channel"] = inputs.shape[1]
metric["n_time"] = inputs.shape[-1]
metric["dataset length"] += metric["batch size"]
metric["iteration"] += 1
metric["loss"] = loss.item()
metric["cumulative loss"] += metric["loss"]
metric["average loss"] = metric["cumulative loss"] / metric["iteration"]
metric["iteration time"] = time() - start
metric["epoch time"] += metric["iteration time"]
metric()
if reduce_lr_on_plateau and isinstance(scheduler, ReduceLROnPlateau):
scheduler.step(metric["average loss"])
elif not isinstance(scheduler, ReduceLROnPlateau):
scheduler.step()
def evaluate(
model,
criterion,
data_loader,
decoder,
language_model,
device,
epoch,
disable_logger=False,
):
with torch.no_grad():
model.eval()
start = time()
metric = MetricLogger("validation", disable=disable_logger)
metric["epoch"] = epoch
for inputs, targets, tensors_lengths, target_lengths in bg_iterator(
data_loader, maxsize=2
):
inputs = inputs.to(device, non_blocking=True)
targets = targets.to(device, non_blocking=True)
# keep batch first for data parallel
outputs = model(inputs).transpose(-1, -2).transpose(0, 1)
# CTC
# outputs: input length, batch size, number of classes (including blank)
# targets: batch size, max target length
# input_lengths: batch size
# target_lengths: batch size
metric["cumulative loss"] += criterion(
outputs, targets, tensors_lengths, target_lengths
).item()
metric["dataset length"] += len(inputs)
metric["iteration"] += 1
compute_error_rates(outputs, targets, decoder, language_model, metric)
metric["average loss"] = metric["cumulative loss"] / metric["iteration"]
metric["validation time"] = time() - start
metric()
return metric["average loss"]
def main(rank, args):
# Distributed setup
if args.distributed:
setup_distributed(rank, args.world_size)
not_main_rank = args.distributed and rank != 0
logging.info("Start time: %s", datetime.now())
# Explicitly set seed to make sure models created in separate processes
# start from same random weights and biases
torch.manual_seed(args.seed)
# Empty CUDA cache
torch.cuda.empty_cache()
# Change backend for flac files
torchaudio.set_audio_backend("soundfile")
# Transforms
melkwargs = {
"n_fft": args.win_length,
"n_mels": args.n_bins,
"hop_length": args.hop_length,
}
sample_rate_original = 16000
if args.type == "mfcc":
transforms = torch.nn.Sequential(
torchaudio.transforms.MFCC(
sample_rate=sample_rate_original,
n_mfcc=args.n_bins,
melkwargs=melkwargs,
),
)
num_features = args.n_bins
elif args.type == "waveform":
transforms = torch.nn.Sequential(UnsqueezeFirst())
num_features = 1
else:
raise ValueError("Model type not supported")
if args.normalize:
transforms = torch.nn.Sequential(transforms, Normalize())
augmentations = torch.nn.Sequential()
if args.freq_mask:
augmentations = torch.nn.Sequential(
augmentations,
torchaudio.transforms.FrequencyMasking(freq_mask_param=args.freq_mask),
)
if args.time_mask:
augmentations = torch.nn.Sequential(
augmentations,
torchaudio.transforms.TimeMasking(time_mask_param=args.time_mask),
)
# Text preprocessing
char_blank = "*"
char_space = " "
char_apostrophe = "'"
labels = char_blank + char_space + char_apostrophe + string.ascii_lowercase
language_model = LanguageModel(labels, char_blank, char_space)
# Dataset
training, validation = split_process_librispeech(
[args.dataset_train, args.dataset_valid],
[transforms, transforms],
language_model,
root=args.dataset_root,
folder_in_archive=args.dataset_folder_in_archive,
)
# Decoder
if args.decoder == "greedy":
decoder = GreedyDecoder()
else:
raise ValueError("Selected decoder not supported")
# Model
model = Wav2Letter(
num_classes=language_model.length,
input_type=args.type,
num_features=num_features,
)
if args.jit:
model = torch.jit.script(model)
if args.distributed:
n = torch.cuda.device_count() // args.world_size
devices = list(range(rank * n, (rank + 1) * n))
model = model.to(devices[0])
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=devices)
else:
devices = ["cuda" if torch.cuda.is_available() else "cpu"]
model = model.to(devices[0], non_blocking=True)
model = torch.nn.DataParallel(model)
n = count_parameters(model)
logging.info("Number of parameters: %s", n)
# Optimizer
if args.optimizer == "adadelta":
optimizer = Adadelta(
model.parameters(),
lr=args.learning_rate,
weight_decay=args.weight_decay,
eps=args.eps,
rho=args.rho,
)
elif args.optimizer == "sgd":
optimizer = SGD(
model.parameters(),
lr=args.learning_rate,
momentum=args.momentum,
weight_decay=args.weight_decay,
)
elif args.optimizer == "adam":
optimizer = Adam(
model.parameters(),
lr=args.learning_rate,
momentum=args.momentum,
weight_decay=args.weight_decay,
)
elif args.optimizer == "adamw":
optimizer = AdamW(
model.parameters(),
lr=args.learning_rate,
momentum=args.momentum,
weight_decay=args.weight_decay,
)
else:
raise ValueError("Selected optimizer not supported")
if args.scheduler == "exponential":
scheduler = ExponentialLR(optimizer, gamma=args.gamma)
elif args.scheduler == "reduceonplateau":
scheduler = ReduceLROnPlateau(optimizer, patience=10, threshold=1e-3)
else:
raise ValueError("Selected scheduler not supported")
criterion = torch.nn.CTCLoss(
blank=language_model.mapping[char_blank], zero_infinity=False
)
# Data Loader
collate_fn_train = collate_factory(model_length_function, augmentations)
collate_fn_valid = collate_factory(model_length_function)
loader_training_params = {
"num_workers": args.workers,
"pin_memory": True,
"shuffle": True,
"drop_last": True,
}
loader_validation_params = loader_training_params.copy()
loader_validation_params["shuffle"] = False
loader_training = DataLoader(
training,
batch_size=args.batch_size,
collate_fn=collate_fn_train,
**loader_training_params,
)
loader_validation = DataLoader(
validation,
batch_size=args.batch_size,
collate_fn=collate_fn_valid,
**loader_validation_params,
)
# Setup checkpoint
best_loss = 1.0
load_checkpoint = args.checkpoint and os.path.isfile(args.checkpoint)
if args.distributed:
torch.distributed.barrier()
if load_checkpoint:
logging.info("Checkpoint: loading %s", args.checkpoint)
checkpoint = torch.load(args.checkpoint)
args.start_epoch = checkpoint["epoch"]
best_loss = checkpoint["best_loss"]
model.load_state_dict(checkpoint["state_dict"])
optimizer.load_state_dict(checkpoint["optimizer"])
scheduler.load_state_dict(checkpoint["scheduler"])
logging.info(
"Checkpoint: loaded '%s' at epoch %s", args.checkpoint, checkpoint["epoch"]
)
else:
logging.info("Checkpoint: not found")
save_checkpoint(
{
"epoch": args.start_epoch,
"state_dict": model.state_dict(),
"best_loss": best_loss,
"optimizer": optimizer.state_dict(),
"scheduler": scheduler.state_dict(),
},
False,
args.checkpoint,
not_main_rank,
)
if args.distributed:
torch.distributed.barrier()
torch.autograd.set_detect_anomaly(False)
for epoch in range(args.start_epoch, args.epochs):
logging.info("Epoch: %s", epoch)
train_one_epoch(
model,
criterion,
optimizer,
scheduler,
loader_training,
decoder,
language_model,
devices[0],
epoch,
args.clip_grad,
not_main_rank,
not args.reduce_lr_valid,
)
loss = evaluate(
model,
criterion,
loader_validation,
decoder,
language_model,
devices[0],
epoch,
not_main_rank,
)
if args.reduce_lr_valid and isinstance(scheduler, ReduceLROnPlateau):
scheduler.step(loss)
is_best = loss < best_loss
best_loss = min(loss, best_loss)
save_checkpoint(
{
"epoch": epoch + 1,
"state_dict": model.state_dict(),
"best_loss": best_loss,
"optimizer": optimizer.state_dict(),
"scheduler": scheduler.state_dict(),
},
is_best,
args.checkpoint,
not_main_rank,
)
logging.info("End time: %s", datetime.now())
if args.distributed:
torch.distributed.destroy_process_group()
def spawn_main(main, args):
if args.distributed:
torch.multiprocessing.spawn(
main, args=(args,), nprocs=args.world_size, join=True
)
else:
main(0, args)
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
args = parse_args()
spawn_main(main, args)