-
Notifications
You must be signed in to change notification settings - Fork 161
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
6 changed files
with
1,282 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,355 @@ | ||
# Copyright (c) Facebook, Inc. and its affiliates. | ||
import os | ||
import unittest | ||
import warnings | ||
from functools import partial | ||
|
||
import expecttest | ||
import numpy as np | ||
|
||
import torch | ||
|
||
from _utils._common_utils_for_test import create_temp_dir, reset_after_n_next_calls | ||
from torchdata.datapipes.iter import ( | ||
FileLister, | ||
FileOpener, | ||
FSSpecFileLister, | ||
FSSpecFileOpener, | ||
FSSpecSaver, | ||
IterableWrapper, | ||
TFRecordLoader, | ||
) | ||
|
||
try: | ||
import tensorflow as tf | ||
|
||
HAS_TF = True | ||
except ImportError: | ||
HAS_TF = False | ||
skipIfNoTF = unittest.skipIf(not HAS_TF, "no tensorflow") | ||
|
||
|
||
def create_temp_tfrecord_files(temp_dir: str): | ||
with tf.io.TFRecordWriter(os.path.join(temp_dir, "example.tfrecord")) as writer: | ||
for _ in range(4): | ||
x = tf.random.uniform( | ||
[ | ||
10, | ||
] | ||
) | ||
|
||
record_bytes = tf.train.Example( | ||
features=tf.train.Features( | ||
feature={ | ||
"x_float": tf.train.Feature(float_list=tf.train.FloatList(value=x)), | ||
"x_int": tf.train.Feature(int64_list=tf.train.Int64List(value=tf.cast(x * 10, "int64"))), | ||
"x_byte": tf.train.Feature(bytes_list=tf.train.BytesList(value=[b"test str"])), | ||
} | ||
) | ||
).SerializeToString() | ||
writer.write(record_bytes) | ||
|
||
with tf.io.TFRecordWriter(os.path.join(temp_dir, "sequence_example.tfrecord")) as writer: | ||
for _ in range(4): | ||
x = tf.random.uniform( | ||
[ | ||
10, | ||
] | ||
) | ||
rep = int( | ||
tf.random.uniform( | ||
[ | ||
1, | ||
] | ||
).numpy()[0] | ||
* 10 | ||
+ 1 | ||
) | ||
|
||
record_bytes = tf.train.SequenceExample( | ||
context=tf.train.Features( | ||
feature={ | ||
"x_float": tf.train.Feature(float_list=tf.train.FloatList(value=x)), | ||
"x_int": tf.train.Feature(int64_list=tf.train.Int64List(value=tf.cast(x * 10, "int64"))), | ||
"x_byte": tf.train.Feature(bytes_list=tf.train.BytesList(value=[b"test str"])), | ||
} | ||
), | ||
feature_lists=tf.train.FeatureLists( | ||
feature_list={ | ||
"x_float_seq": tf.train.FeatureList( | ||
feature=[tf.train.Feature(float_list=tf.train.FloatList(value=x))] * rep | ||
), | ||
"x_int_seq": tf.train.FeatureList( | ||
feature=[tf.train.Feature(int64_list=tf.train.Int64List(value=tf.cast(x * 10, "int64")))] | ||
* rep | ||
), | ||
"x_byte_seq": tf.train.FeatureList( | ||
feature=[tf.train.Feature(bytes_list=tf.train.BytesList(value=[b"test str"]))] * rep | ||
), | ||
} | ||
), | ||
).SerializeToString() | ||
writer.write(record_bytes) | ||
|
||
|
||
class TestDataPipeTFRecord(expecttest.TestCase): | ||
def setUp(self): | ||
self.temp_dir = create_temp_dir() | ||
self.temp_files = create_temp_tfrecord_files(self.temp_dir.name) | ||
|
||
def tearDown(self): | ||
try: | ||
self.temp_dir.cleanup() | ||
except Exception as e: | ||
warnings.warn(f"TestDataPipeTFRecord was not able to cleanup temp dir due to {e}") | ||
|
||
def assertArrayEqual(self, arr1, arr2): | ||
np.testing.assert_array_equal(arr1, arr2) | ||
|
||
@skipIfNoTF | ||
@torch.no_grad() | ||
def test_tfrecord_loader_example_iterdatapipe(self): | ||
filename = f"{self.temp_dir.name}/example.tfrecord" | ||
datapipe1 = IterableWrapper([filename]) | ||
datapipe2 = FileOpener(datapipe1, mode="b") | ||
|
||
# Functional Test: test if the returned data is correct | ||
tfrecord_parser = datapipe2.load_from_tfrecord() | ||
result = list(tfrecord_parser) | ||
self.assertEqual(len(result), 4) | ||
decode_fn = partial( | ||
tf.io.parse_single_example, | ||
features={ | ||
"x_float": tf.io.FixedLenFeature([10], tf.float32), | ||
"x_int": tf.io.FixedLenFeature([10], tf.int64), | ||
"x_byte": tf.io.FixedLenFeature([], tf.string), | ||
}, | ||
) | ||
expected_res = final_expected_res = list(tf.data.TFRecordDataset([filename]).map(decode_fn)) | ||
for true_data, loaded_data in zip(expected_res, result): | ||
self.assertSetEqual(set(true_data.keys()), set(loaded_data.keys())) | ||
for key in ["x_float", "x_int"]: | ||
self.assertArrayEqual(true_data[key].numpy(), loaded_data[key].numpy()) | ||
self.assertEqual(len(loaded_data["x_byte"]), 1) | ||
self.assertEqual(true_data["x_byte"].numpy(), loaded_data["x_byte"][0]) | ||
|
||
# Functional Test: test if the shape of the returned data is correct when using spec | ||
tfrecord_parser = datapipe2.load_from_tfrecord( | ||
{ | ||
"x_float": ((5, 2), torch.float64), | ||
"x_int": ((5, 2), torch.int32), | ||
"x_byte": (tuple(), None), | ||
} | ||
) | ||
result = list(tfrecord_parser) | ||
self.assertEqual(len(result), 4) | ||
decode_fn = partial( | ||
tf.io.parse_single_example, | ||
features={ | ||
"x_float": tf.io.FixedLenFeature([5, 2], tf.float32), | ||
"x_int": tf.io.FixedLenFeature([5, 2], tf.int64), | ||
"x_byte": tf.io.FixedLenFeature([], tf.string), | ||
}, | ||
) | ||
expected_res = list(tf.data.TFRecordDataset([filename]).map(decode_fn)) | ||
for true_data, loaded_data in zip(expected_res, result): | ||
self.assertSetEqual(set(true_data.keys()), set(loaded_data.keys())) | ||
self.assertArrayEqual(true_data["x_float"].numpy(), loaded_data["x_float"].float().numpy()) | ||
self.assertArrayEqual(true_data["x_int"].numpy(), loaded_data["x_int"].long().numpy()) | ||
self.assertEqual(loaded_data["x_float"].dtype, torch.float64) | ||
self.assertEqual(loaded_data["x_int"].dtype, torch.int32) | ||
self.assertEqual(true_data["x_byte"].numpy(), loaded_data["x_byte"]) | ||
|
||
# Functional Test: ignore features missing from spec | ||
tfrecord_parser = datapipe2.load_from_tfrecord( | ||
{ | ||
"x_float": ((10,), torch.float32), | ||
} | ||
) | ||
result = list(tfrecord_parser) | ||
self.assertEqual(len(result), 4) | ||
decode_fn = partial( | ||
tf.io.parse_single_example, | ||
features={ | ||
"x_float": tf.io.FixedLenFeature([10], tf.float32), | ||
}, | ||
) | ||
expected_res = list(tf.data.TFRecordDataset([filename]).map(decode_fn)) | ||
for true_data, loaded_data in zip(expected_res, result): | ||
self.assertSetEqual(set(true_data.keys()), set(loaded_data.keys())) | ||
self.assertArrayEqual(true_data["x_float"].numpy(), loaded_data["x_float"].float().numpy()) | ||
|
||
# Functional Test: raises error if missing spec feature | ||
with self.assertRaises(RuntimeError): | ||
tfrecord_parser = datapipe2.load_from_tfrecord( | ||
{ | ||
"x_float_unknown": ((5, 2), torch.float64), | ||
"x_int": ((5, 2), torch.int32), | ||
"x_byte": (tuple(), None), | ||
} | ||
) | ||
result = list(tfrecord_parser) | ||
|
||
# Reset Test: | ||
tfrecord_parser = TFRecordLoader(datapipe2) | ||
expected_res = final_expected_res | ||
n_elements_before_reset = 2 | ||
res_before_reset, res_after_reset = reset_after_n_next_calls(tfrecord_parser, n_elements_before_reset) | ||
self.assertEqual(len(expected_res[:n_elements_before_reset]), len(res_before_reset)) | ||
for true_data, loaded_data in zip(expected_res[:n_elements_before_reset], res_before_reset): | ||
self.assertSetEqual(set(true_data.keys()), set(loaded_data.keys())) | ||
for key in ["x_float", "x_int"]: | ||
self.assertArrayEqual(true_data[key].numpy(), loaded_data[key].numpy()) | ||
self.assertEqual(true_data["x_byte"].numpy(), loaded_data["x_byte"][0]) | ||
self.assertEqual(len(expected_res), len(res_after_reset)) | ||
for true_data, loaded_data in zip(expected_res, res_after_reset): | ||
self.assertSetEqual(set(true_data.keys()), set(loaded_data.keys())) | ||
for key in ["x_float", "x_int"]: | ||
self.assertArrayEqual(true_data[key].numpy(), loaded_data[key].numpy()) | ||
self.assertEqual(true_data["x_byte"].numpy(), loaded_data["x_byte"][0]) | ||
|
||
# __len__ Test: length isn't implemented since it cannot be known ahead of time | ||
with self.assertRaisesRegex(TypeError, "doesn't have valid length"): | ||
len(tfrecord_parser) | ||
|
||
@skipIfNoTF | ||
@torch.no_grad() | ||
def test_tfrecord_loader_sequence_example_iterdatapipe(self): | ||
filename = f"{self.temp_dir.name}/sequence_example.tfrecord" | ||
datapipe1 = IterableWrapper([filename]) | ||
datapipe2 = FileOpener(datapipe1, mode="b") | ||
|
||
# Functional Test: test if the returned data is correct | ||
tfrecord_parser = datapipe2.load_from_tfrecord() | ||
result = list(tfrecord_parser) | ||
self.assertEqual(len(result), 4) | ||
decode_fn = partial( | ||
tf.io.parse_single_sequence_example, | ||
context_features={ | ||
"x_float": tf.io.FixedLenFeature([10], tf.float32), | ||
"x_int": tf.io.FixedLenFeature([10], tf.int64), | ||
"x_byte": tf.io.FixedLenFeature([1], tf.string), | ||
}, | ||
sequence_features={ | ||
"x_float_seq": tf.io.RaggedFeature(tf.float32), | ||
"x_int_seq": tf.io.RaggedFeature(tf.int64), | ||
"x_byte_seq": tf.io.RaggedFeature(tf.string), | ||
}, | ||
) | ||
expected_res = final_expected_res = list(tf.data.TFRecordDataset([filename]).map(decode_fn)) | ||
for (true_data_ctx, true_data_seq), loaded_data in zip(expected_res, result): | ||
self.assertSetEqual(set(true_data_ctx.keys()).union(true_data_seq.keys()), set(loaded_data.keys())) | ||
for key in ["x_float", "x_int"]: | ||
self.assertArrayEqual(true_data_ctx[key].numpy(), loaded_data[key].numpy()) | ||
self.assertEqual(true_data_seq[key + "_seq"].to_tensor().shape[0], len(loaded_data[key + "_seq"])) | ||
self.assertIsInstance(loaded_data[key + "_seq"], list) | ||
for a1, a2 in zip(true_data_seq[key + "_seq"], loaded_data[key + "_seq"]): | ||
self.assertArrayEqual(a1, a2) | ||
self.assertEqual(true_data_ctx["x_byte"].numpy(), loaded_data["x_byte"]) | ||
self.assertListEqual(list(true_data_seq["x_byte_seq"].to_tensor().numpy()), loaded_data["x_byte_seq"]) | ||
|
||
# Functional Test: test if the shape of the returned data is correct when using spec | ||
tfrecord_parser = datapipe2.load_from_tfrecord( | ||
{ | ||
"x_float": ((5, 2), torch.float64), | ||
"x_int": ((5, 2), torch.int32), | ||
"x_byte": (tuple(), None), | ||
"x_float_seq": ((-1, 5, 2), torch.float64), | ||
"x_int_seq": ((-1, 5, 2), torch.int32), | ||
"x_byte_seq": ((-1,), None), | ||
} | ||
) | ||
result = list(tfrecord_parser) | ||
self.assertEqual(len(result), 4) | ||
decode_fn = partial( | ||
tf.io.parse_single_sequence_example, | ||
context_features={ | ||
"x_float": tf.io.FixedLenFeature([5, 2], tf.float32), | ||
"x_int": tf.io.FixedLenFeature([5, 2], tf.int64), | ||
"x_byte": tf.io.FixedLenFeature([], tf.string), | ||
}, | ||
sequence_features={ | ||
"x_float_seq": tf.io.RaggedFeature(tf.float32), | ||
"x_int_seq": tf.io.RaggedFeature(tf.int64), | ||
"x_byte_seq": tf.io.RaggedFeature(tf.string), | ||
}, | ||
) | ||
expected_res = list(tf.data.TFRecordDataset([filename]).map(decode_fn)) | ||
for (true_data_ctx, true_data_seq), loaded_data in zip(expected_res, result): | ||
self.assertSetEqual(set(true_data_ctx.keys()).union(true_data_seq.keys()), set(loaded_data.keys())) | ||
for key in ["x_float", "x_int"]: | ||
l_loaded_data = loaded_data[key] | ||
if key == "x_float": | ||
l_loaded_data = l_loaded_data.float() | ||
else: | ||
l_loaded_data = l_loaded_data.int() | ||
self.assertArrayEqual(true_data_ctx[key].numpy(), l_loaded_data.numpy()) | ||
self.assertArrayEqual( | ||
tf.reshape(true_data_seq[key + "_seq"].to_tensor(), [-1, 5, 2]), loaded_data[key + "_seq"] | ||
) | ||
self.assertEqual(true_data_ctx["x_byte"].numpy(), loaded_data["x_byte"]) | ||
self.assertListEqual(list(true_data_seq["x_byte_seq"].to_tensor().numpy()), loaded_data["x_byte_seq"]) | ||
|
||
# Functional Test: ignore features missing from spec | ||
tfrecord_parser = datapipe2.load_from_tfrecord( | ||
{ | ||
"x_float": ((10,), torch.float32), | ||
} | ||
) | ||
result = list(tfrecord_parser) | ||
self.assertEqual(len(result), 4) | ||
decode_fn = partial( | ||
tf.io.parse_single_example, | ||
features={ | ||
"x_float": tf.io.FixedLenFeature([10], tf.float32), | ||
}, | ||
) | ||
expected_res = list(tf.data.TFRecordDataset([filename]).map(decode_fn)) | ||
for true_data, loaded_data in zip(expected_res, result): | ||
self.assertSetEqual(set(true_data.keys()), set(loaded_data.keys())) | ||
self.assertArrayEqual(true_data["x_float"].numpy(), loaded_data["x_float"].float().numpy()) | ||
|
||
# Functional Test: raises error if missing spec feature | ||
with self.assertRaises(RuntimeError): | ||
tfrecord_parser = datapipe2.load_from_tfrecord( | ||
{"x_float_unknown": ((5, 2), torch.float64), "x_int": ((5, 2), torch.int32), "x_byte": None} | ||
) | ||
result = list(tfrecord_parser) | ||
|
||
# Reset Test: | ||
tfrecord_parser = TFRecordLoader(datapipe2) | ||
expected_res = final_expected_res | ||
n_elements_before_reset = 2 | ||
res_before_reset, res_after_reset = reset_after_n_next_calls(tfrecord_parser, n_elements_before_reset) | ||
self.assertEqual(len(expected_res[:n_elements_before_reset]), len(res_before_reset)) | ||
for (true_data_ctx, true_data_seq), loaded_data in zip( | ||
expected_res[:n_elements_before_reset], res_before_reset | ||
): | ||
self.assertSetEqual(set(true_data_ctx.keys()).union(true_data_seq.keys()), set(loaded_data.keys())) | ||
for key in ["x_float", "x_int"]: | ||
self.assertArrayEqual(true_data_ctx[key].numpy(), loaded_data[key].numpy()) | ||
self.assertEqual(true_data_seq[key + "_seq"].to_tensor().shape[0], len(loaded_data[key + "_seq"])) | ||
self.assertIsInstance(loaded_data[key + "_seq"], list) | ||
for a1, a2 in zip(true_data_seq[key + "_seq"], loaded_data[key + "_seq"]): | ||
self.assertArrayEqual(a1, a2) | ||
self.assertEqual(true_data_ctx["x_byte"].numpy(), loaded_data["x_byte"]) | ||
self.assertListEqual(list(true_data_seq["x_byte_seq"].to_tensor().numpy()), loaded_data["x_byte_seq"]) | ||
self.assertEqual(len(expected_res), len(res_after_reset)) | ||
for (true_data_ctx, true_data_seq), loaded_data in zip(expected_res, res_after_reset): | ||
self.assertSetEqual(set(true_data_ctx.keys()).union(true_data_seq.keys()), set(loaded_data.keys())) | ||
for key in ["x_float", "x_int"]: | ||
self.assertArrayEqual(true_data_ctx[key].numpy(), loaded_data[key].numpy()) | ||
self.assertEqual(true_data_seq[key + "_seq"].to_tensor().shape[0], len(loaded_data[key + "_seq"])) | ||
self.assertIsInstance(loaded_data[key + "_seq"], list) | ||
for a1, a2 in zip(true_data_seq[key + "_seq"], loaded_data[key + "_seq"]): | ||
self.assertArrayEqual(a1, a2) | ||
self.assertEqual(true_data_ctx["x_byte"].numpy(), loaded_data["x_byte"]) | ||
self.assertListEqual(list(true_data_seq["x_byte_seq"].to_tensor().numpy()), loaded_data["x_byte_seq"]) | ||
|
||
# __len__ Test: length isn't implemented since it cannot be known ahead of time | ||
with self.assertRaisesRegex(TypeError, "doesn't have valid length"): | ||
len(tfrecord_parser) | ||
|
||
|
||
if __name__ == "__main__": | ||
unittest.main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.