-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathmnist_00.py
169 lines (143 loc) · 5.17 KB
/
mnist_00.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# flake8: noqa
from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import datasets, transforms
from torch.optim import Adadelta
from torch.optim.lr_scheduler import StepLR
###### HYDRA BLOCK ######
import hydra
from hydra.core.config_store import ConfigStore
from dataclasses import dataclass
# hydra-torch structured config imports
from hydra_configs.torch.optim import AdadeltaConf
from hydra_configs.torch.optim.lr_scheduler import StepLRConf
@dataclass
class MNISTConf:
batch_size: int = 64
test_batch_size: int = 1000
epochs: int = 14
no_cuda: bool = False
dry_run: bool = False
seed: int = 1
log_interval: int = 10
save_model: bool = False
checkpoint_name: str = "unnamed.pt"
adadelta: AdadeltaConf = AdadeltaConf()
steplr: StepLRConf = StepLRConf(
step_size=1
) # we pass a default for step_size since it is required, but missing a default in PyTorch (and consequently in hydra-torch)
cs = ConfigStore.instance()
cs.store(name="mnistconf", node=MNISTConf)
###### / HYDRA BLOCK ######
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 32, 3, 1)
self.conv2 = nn.Conv2d(32, 64, 3, 1)
self.dropout1 = nn.Dropout2d(0.25)
self.dropout2 = nn.Dropout2d(0.5)
self.fc1 = nn.Linear(9216, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.conv2(x)
x = F.relu(x)
x = F.max_pool2d(x, 2)
x = self.dropout1(x)
x = torch.flatten(x, 1)
x = self.fc1(x)
x = F.relu(x)
x = self.dropout2(x)
x = self.fc2(x)
output = F.log_softmax(x, dim=1)
return output
def train(args, model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print(
"Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format(
epoch,
batch_idx * len(data),
len(train_loader.dataset),
100.0 * batch_idx / len(train_loader),
loss.item(),
)
)
if args.dry_run:
break
def test(model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.nll_loss(
output, target, reduction="sum"
).item() # sum up batch loss
pred = output.argmax(
dim=1, keepdim=True
) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print(
"\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n".format(
test_loss,
correct,
len(test_loader.dataset),
100.0 * correct / len(test_loader.dataset),
)
)
@hydra.main(config_name="mnistconf")
def main(cfg): # DIFF
print(cfg.pretty())
use_cuda = not cfg.no_cuda and torch.cuda.is_available() # DIFF
torch.manual_seed(cfg.seed) # DIFF
device = torch.device("cuda" if use_cuda else "cpu")
train_kwargs = {"batch_size": cfg.batch_size} # DIFF
test_kwargs = {"batch_size": cfg.test_batch_size} # DIFF
if use_cuda:
cuda_kwargs = {"num_workers": 1, "pin_memory": True, "shuffle": True}
train_kwargs.update(cuda_kwargs)
test_kwargs.update(cuda_kwargs)
transform = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
)
dataset1 = datasets.MNIST("../data", train=True, download=True, transform=transform)
dataset2 = datasets.MNIST("../data", train=False, transform=transform)
train_loader = torch.utils.data.DataLoader(dataset1, **train_kwargs)
test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs)
model = Net().to(device)
optimizer = Adadelta(
lr=cfg.adadelta.lr,
rho=cfg.adadelta.rho,
eps=cfg.adadelta.eps,
weight_decay=cfg.adadelta.weight_decay,
params=model.parameters(),
) # DIFF
scheduler = StepLR(
step_size=cfg.steplr.step_size,
gamma=cfg.steplr.gamma,
last_epoch=cfg.steplr.last_epoch,
optimizer=optimizer,
) # DIFF
for epoch in range(1, cfg.epochs + 1): # DIFF
train(cfg, model, device, train_loader, optimizer, epoch) # DIFF
test(model, device, test_loader)
scheduler.step()
if cfg.save_model: # DIFF
torch.save(model.state_dict(), cfg.checkpoint_name) # DIFF
if __name__ == "__main__":
main()