For different tasks, you should choose different .json file to initialize the corresponding settings. Some specific settings for different tasks are as follows:
- Step 1 (train the main branch):
"name": "sr/step1" // name to save training results
, "scale": 4 // upscale for SR
, "input_alpha":0 // set the control variable α_in as 0
, "use_gan": false // we use mae loss in Step 1
, "saved_model": null // path of the trained model
- Step 2 (train the tuning branch):
"name": "sr/step2" // name to save training results
, "scale": 4 // upscale for SR
, "input_alpha":1 // set the control variable α_in as 1
, "use_gan": true // we use mae loss , perceptual loss and gan loss in Step 2
, "saved_model": "../models/latest_G.pth" // path of the model trained in Step 1.
- Step 1 (train the main branch):
"name": "denoise_gray/sigma25_step1" // name to save training results
, "input_alpha":0 // set the control variable α_in as 0
, "noise_level": 25 // the corresponding noise level of the input images
, "use_gan": false // we use mse loss in Step 1
, "saved_model": null // path of the trained model
- Step 2 (train the tuning branch):
"name": "denoise_gray/sigma50_step2" // name to save training results
, "input_alpha":1 // set the control variable α_in as 1
, "noise_level": 50 // the corresponding noise level of the input images
, "use_gan": false // We use the same loss as used in Step 1
, "saved_model": "../models/latest_G.pth" // path of the model trained in Step 1.
- Step 1 (train the main branch):
"name": "deblock/step1" // name to save training results
, "input_alpha":0 // set the control variable α_in as 0
, "use_gan": false // we use mae loss in Step 1
, "saved_model": null // path of the trained model
, "dataroot_LR": "../data/BSD500/train400_Y_jpeg/jpeg_10" // the corresponding input images with quality factor 10
- Step 2 (train the tuning branch):
"name": "deblock/step2" // name to save training results
, "input_alpha":1 // set the control variable α_in as 1
, "use_gan": false // We use the same loss as used in Step 1
, "saved_model": "../models/latest_G.pth" // path of the model trained in Step 1.
, "dataroot_LR": "../data/BSD500/train400_Y_jpeg/jpeg_40" // the corresponding input images with quality factor 40