Skip to content

Latest commit

 

History

History

train

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 

For different tasks, you should choose different .json file to initialize the corresponding settings. Some specific settings for different tasks are as follows:

Super-resolution:

  • Step 1 (train the main branch):
"name": "sr/step1"                         // name to save training results
, "scale": 4                               // upscale for SR 
 , "input_alpha":0                         // set the control variable α_in as 0
, "use_gan": false                         // we use mae loss in Step 1
, "saved_model": null                      // path of the trained model
  • Step 2 (train the tuning branch):
"name": "sr/step2"                         // name to save training results
, "scale": 4                               // upscale for SR 
 , "input_alpha":1                         // set the control variable α_in as 1
, "use_gan": true                          // we use mae loss , perceptual loss and gan loss in Step 2
, "saved_model": "../models/latest_G.pth"  // path of the model trained in Step 1.

Denoising:

  • Step 1 (train the main branch):
"name": "denoise_gray/sigma25_step1"       // name to save training results
 , "input_alpha":0                         // set the control variable α_in as 0
, "noise_level": 25                        // the corresponding noise level of the input images
, "use_gan": false                         // we use mse loss in Step 1
, "saved_model": null                      // path of the trained model
  • Step 2 (train the tuning branch):
"name": "denoise_gray/sigma50_step2"        // name to save training results
 , "input_alpha":1                          // set the control variable α_in as 1
, "noise_level": 50                         // the corresponding noise level of the input images
, "use_gan": false                          // We use the same loss as used in Step 1
, "saved_model": "../models/latest_G.pth"   // path of the model trained in Step 1.

Deblocking:

  • Step 1 (train the main branch):
"name": "deblock/step1"                    // name to save training results
 , "input_alpha":0                         // set the control variable α_in as 0
, "use_gan": false                         // we use mae loss in Step 1
, "saved_model": null                      // path of the trained model
, "dataroot_LR": "../data/BSD500/train400_Y_jpeg/jpeg_10" // the corresponding input images with  quality factor 10
  • Step 2 (train the tuning branch):
"name": "deblock/step2"                    // name to save training results
 , "input_alpha":1                         // set the control variable α_in as 1
, "use_gan": false                         // We use the same loss as used in Step 1
, "saved_model": "../models/latest_G.pth"  // path of the model trained in Step 1.
, "dataroot_LR": "../data/BSD500/train400_Y_jpeg/jpeg_40" // the corresponding input images with  quality factor 40