Skip to content

qinzheng2000/GeneralTrack

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GeneralTrack

Towards Generalizable Multi-Object Tracking

Zheng Qin, Le Wang, Sanping Zhou, Panpan Fu, Gang Hua, Wei Tang

Installation

1. Installing on the host machine

git clone 
cd GeneralTrack
conda create -n generaltrack python=3.8 -y
conda activate generaltrack
pip install torch==1.10.0+cu111 torchvision==0.11.0+cu111 torchaudio==0.10.0 -f https://download.pytorch.org/whl/torch_stable.html
pip install -r requirements.txt
python setup.py develop
pip install cython
pip install 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'
pip install cython_bbox

Data preparation

Download BDD100k for MOT 2020 Labels and MOT 2020 images. Unzip all of them to datasets.

Also download detections from GHOST and also extract into dataset.

datasets/
    - bdd100k
        - images
            - track
                - train
                - val
                - test
        - labels
            - box_track_20
                - train
                - val
    - detections_GHOST
        - bdd100k
            - train
            - val
            - test

Packaging detection results and inference files together.

cd <GeneralTrack_HOME>
python3 tools/convert_bdd100k_to_coco.py

Tracking

Evaluation on BDD100K

  • Validation set
cd <GeneralTrack_HOME>
python3 tools/track.py
python3 tools/txt2json_trackeval.py

# Unzip 'data.zip'(https://drive.google.com/file/d/1ZAemZSiRtJNIL68g2mYViBDfVMt4igL1/view?usp=drive_link). Put the json file into 'TrackEval/data/trackers/bdd100k/bdd100k_val/xxtrack/data'
python3 TrackEval/scripts/run_bdd.py --USE_PARALLEL True --NUM_PARALLEL_CORES 64
  • Test set
cd <GeneralTrack_HOME>
python3 tools/track.py --test
python3 tools/txt2json_web.py

Submit to BDD server

Citation


Acknowledgement

A large part of the code and the detection results are borrowed from ByteTrack, RAFT, GHOST. Many thanks for their wonderful works.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published