-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfinetune.py
274 lines (236 loc) · 9.79 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import os
import argparse
import logging
import math
from tqdm.auto import tqdm
import torch
import evaluate
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from transformers import (SchedulerType, BertConfig, BertTokenizer,
default_data_collator, DataCollatorWithPadding,
get_scheduler)
from torch.utils.data import DataLoader
import wandb
from utils.dataloader import load_data
from utils.models import RobertaForSequenceClassification
logger = get_logger(__name__)
def parse_args():
parser = argparse.ArgumentParser(
'Finetune a transformers model on a text classification task.')
parser.add_argument(
'--max_length',
type=int,
default=512,
help=
('The maximum total input sequence length after tokenization. Sequences longer than this will be truncated,'
' sequences shorter will be padded if `--pad_to_max_length` is passed.'
))
parser.add_argument(
'--pad_to_max_length',
action='store_true',
help=
'If passed, pad all samples to `max_length`. Otherwise, dynamic padding is used.'
)
parser.add_argument('--model_name_or_path',
type=str,
default='hfl/chinese-roberta-wwm-ext-large')
parser.add_argument(
'--per_device_train_batch_size',
type=int,
default=16,
help='Batch size (per device) for the training dataloader.')
parser.add_argument(
'--per_device_valid_batch_size',
type=int,
default=16,
help='Batch size (per device) for the valid dataloader.')
parser.add_argument(
'--learning_rate',
type=float,
default=2e-5,
help='Initial learning rate (after the potential warmup period) to use.'
)
parser.add_argument('--weight_decay',
type=float,
default=0.01,
help='Weight decay to use.')
parser.add_argument('--num_train_epochs',
type=int,
default=10,
help='Total number of training epochs to perform.')
parser.add_argument('--max_train_steps',
type=int,
default=None,
help='Total number of training steps to perform.')
parser.add_argument(
'--gradient_accumulation_steps',
type=int,
default=1,
help=
'Number of updates steps to accumulate before performing a backward/update pass.'
)
parser.add_argument('--lr_scheduler_type',
type=SchedulerType,
default='linear',
help='The scheduler type to use.',
choices=[
'linear', 'cosine', 'cosine_with_restarts',
'polynomial', 'constant', 'constant_with_warmup'
])
parser.add_argument(
'--num_warmup_steps',
type=int,
default=0,
help='Number of steps for the warmup in the lr scheduler.')
parser.add_argument('--warmup_ratio',
type=float,
default=0.1,
help='A ratio for warmup steps.')
parser.add_argument('--seed',
type=int,
default=42,
help='A seed for reproducible training.')
parser.add_argument('--cuda', type=str, default='7', help='cuda device')
args = parser.parse_args()
return args
def main():
args = parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.cuda
wandb.init(project=args.model_name_or_path.replace('/', '-'))
accelerator = Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
accelerator.wait_for_everyone()
datasets = load_data(file_name='train')
label_list = (datasets['train']).unique('label')
label_list.sort()
num_labels = len(label_list)
print(f'number of labels: {num_labels}')
config = BertConfig.from_pretrained(args.model_name_or_path,
num_labels=num_labels,
finetuning_task='text classification')
tokenizer = BertTokenizer.from_pretrained(args.model_name_or_path,
use_fast=False)
model = RobertaForSequenceClassification(config, args.model_name_or_path)
padding = 'max_length' if args.pad_to_max_length else False
def preprocess_function(examples):
# tokenize the texts
response = examples['response']
result = tokenizer(text=response,
padding=padding,
max_length=args.max_length,
truncation=True,
add_special_tokens=True,
return_token_type_ids=True)
result['labels'] = examples['label']
return result
with accelerator.main_process_first():
process_datasets = datasets.map(preprocess_function,
batched=True,
remove_columns=['response', 'label'],
desc='running tokenizer on dataset')
train_dataset = process_datasets['train']
if args.pad_to_max_length:
data_collator = default_data_collator
else:
data_collator = DataCollatorWithPadding(
tokenizer,
pad_to_multiple_of=(8 if Accelerator.mixed_precision == 'fp16' else
None))
train_dataloader = DataLoader(train_dataset,
shuffle=True,
collate_fn=data_collator,
batch_size=args.per_device_train_batch_size)
# Optimizer
# Split weights in two groups, one with weight decay and the other not.
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{
'params': [
p for n, p in model.named_parameters()
if not any(nd in n for nd in no_decay)
],
'weight_decay':
args.weight_decay,
},
{
'params': [
p for n, p in model.named_parameters()
if any(nd in n for nd in no_decay)
],
'weight_decay':
0.0,
},
]
optimizer = torch.optim.AdamW(optimizer_grouped_parameters,
lr=args.learning_rate)
num_update_steps_per_epoch = math.ceil(
len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
args.num_warmup_steps = int(args.max_train_steps * args.warmup_ratio)
lr_scheduler = get_scheduler(
name=args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=args.num_warmup_steps,
num_training_steps=args.max_train_steps,
)
# Prepare everything with our `accelerator`.
model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, lr_scheduler)
# Train!
total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info('***** Running training *****')
logger.info(f' Num examples = {len(train_dataset)}')
logger.info(f' Num Epochs = {args.num_train_epochs}')
logger.info(
f' Instantaneous batch size per device = {args.per_device_train_batch_size}'
)
logger.info(
f' Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}'
)
logger.info(
f' Gradient Accumulation steps = {args.gradient_accumulation_steps}')
logger.info(f' Total optimization steps = {args.max_train_steps}')
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(args.max_train_steps),
disable=not accelerator.is_local_main_process)
completed_steps = 0
for epoch in range(0, args.num_train_epochs):
model.train()
total_loss = 0
for step, batch in enumerate(train_dataloader):
outputs = model(**batch)
loss = outputs.loss
total_loss += loss.detach().float()
loss = loss / args.gradient_accumulation_steps
accelerator.backward(loss)
if step % args.gradient_accumulation_steps == 0 or step == len(
train_dataloader) - 1:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
progress_bar.update(1)
completed_steps += 1
wandb.log({'each epoch training loss': loss.item()})
average_training_loss = total_loss / len(train_dataset)
wandb.log({'average_training_loss': average_training_loss})
if epoch == args.num_train_epochs - 1:
model_name_or_path: str = args.model_name_or_path
model_name_or_path = model_name_or_path.replace('/', '-')
target_dir = f'./out/{model_name_or_path}/{args.seed}'
os.makedirs(target_dir, exist_ok=True)
target_file = f'{target_dir}/pytorch_model.bin'
torch.save(model.state_dict(), target_file)
if __name__ == '__main__':
main()