-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathtrain.py
172 lines (137 loc) · 6.61 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import os
import torch
import subprocess
import atexit
import signal
from datetime import datetime
from torch.utils.tensorboard import SummaryWriter
from config import config
from model import *
from trains.trainer import Trainer
from dataset.dataloader import create_dataloader
from tools.patch_sampler import RescalePatchSampler, FlexPatchSampler, FullImageSampler
from tools.ray_sampler import RaySampler
from tools.utils import count_trainable_parameters
def open_tensorboard(log_dir):
p = subprocess.Popen(
["tensorboard", "--logdir", log_dir, '--bind_all', '--reload_multifile', 'True', '--load_fast', 'false']
)
def killme():
os.kill(p.pid, signal.SIGTERM)
atexit.register(killme)
def build_scheduler(optimizer, lr_anneal_every, lr_anneal, last_epoch=-1):
if isinstance(lr_anneal_every, str):
milestones = [int(m) for m in lr_anneal_every.split(',')]
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer,
milestones=milestones,
gamma=lr_anneal,
last_epoch=last_epoch)
else:
lr_scheduler = torch.optim.lr_scheduler.StepLR(
optimizer,
step_size=lr_anneal_every,
gamma=lr_anneal,
last_epoch=last_epoch
)
return lr_scheduler
def build_optimizers(model, optim_cfg, it):
params = model.parameters()
# Optimizers
if optim_cfg['type'] == 'rmsprop':
optimizer = torch.optim.RMSprop(params, lr=optim_cfg['lr'], alpha=0.99, eps=1e-8)
elif optim_cfg['type'] == 'adam':
optimizer = torch.optim.Adam(params, lr=optim_cfg['lr'], betas=(0.9, 0.99), eps=1e-8)
elif optim_cfg['type'] == 'sgd':
optimizer = torch.optim.SGD(params, lr=optim_cfg['lr'], momentum=0.)
else:
raise NotImplementedError
# Learning rate anneling
lr = optimizer.param_groups[0]['lr']
# create learning reate scheduler
scheduler = build_scheduler(optimizer, optim_cfg['lr_anneal_every'], optim_cfg['lr_anneal'], it)
# ensure lr is not decreased again
optimizer.param_groups[0]['lr'] = lr
return optimizer, scheduler
if __name__ == '__main__':
args = config.load_config()
device = 'cuda'
current_time = datetime.today().strftime('%Y-%m-%d-%H-%M-%S')
args.out_dir = os.path.join(args.out_dir, "training-runs", f"{args.name}-{current_time}")
# sampler
args.min_scale = args.patch_size / max(args.img_wh[0], args.img_wh[1])
# Create dataloaders
print("Making dataloader...")
train_loader = create_dataloader(args.data, 'train', args.data_dir, args.img_wh, args.batch_size, args.num_workers)
eval_loader = create_dataloader(args.data, 'val', args.data_dir, args.img_wh, args.batch_size, args.num_workers)
print(f'Data: {args.data}, train: {len(train_loader.dataset)} val: {len(eval_loader.dataset)}')
# ray sampler
dynamic_patch_sampler = FlexPatchSampler(
random_scale=args.random_scale,
min_scale=args.min_scale,
max_scale=args.max_scale,
scale_anneal=args.scale_anneal,
)
static_patch_sampler = RescalePatchSampler()
full_img_sampler = FullImageSampler()
ray_sampler = RaySampler(near=args.near, far=args.far, azim_range=args.azim_range, elev_range=args.elev_range,
radius=args.radius, look_at_origin=args.look_at_origin, ndc=args.ndc,
intrinsics=train_loader.dataset.intrinsics.clone().detach().to(device))
# Create models
generator = GNeRF(
ray_sampler=ray_sampler, xyz_freq=args.xyz_freq, dir_freq=args.xyz_freq, fc_depth=args.fc_depth,
fc_dim=args.fc_dim, chunk=args.chunk, white_back=args.white_back).to(device)
discriminator = Discriminator(
conditional=args.conditional, policy=args.policy, ndf=args.ndf, imsize=args.patch_size).to(device)
inv_net = InversionNet(imsize=args.inv_size, pose_mode=args.pose_mode).to(device)
train_pose_params = PoseParameters(
length=len(train_loader.dataset), pose_mode=args.pose_mode, data=args.data).to(device)
val_pose_params = PoseParameters(
length=len(eval_loader.dataset), pose_mode=args.pose_mode, data=args.data).to(device)
print(f'Generator params: {count_trainable_parameters(generator)}, '
f'Discriminator params: {count_trainable_parameters(discriminator)}'
f'InversionNet params: {count_trainable_parameters(inv_net)}'
f'Optimizable poses: {len(train_pose_params.poses_embed)}')
optim_g, scheduler_g = build_optimizers(generator, args.generator, -1)
optim_d, scheduler_d = build_optimizers(discriminator, args.discriminator, -1)
optim_i, scheduler_i = build_optimizers(inv_net, args.inv_net, -1)
optim_t, scheduler_t = build_optimizers(train_pose_params, args.train_pose_params, -1)
optim_v, scheduler_v = build_optimizers(val_pose_params, args.val_pose_params, -1)
if args.ckpt is not None:
print('load model:', args.ckpt)
ckpt = torch.load(args.ckpt)
generator.load_state_dict(ckpt['g'])
discriminator.load_state_dict(ckpt['d'])
inv_net.load_state_dict(ckpt['i'])
train_pose_params.load_state_dict(ckpt['t'])
val_pose_params.load_state_dict(ckpt['v'])
optim_g.load_state_dict(ckpt['optim_g'])
optim_d.load_state_dict(ckpt['optim_d'])
optim_i.load_state_dict(ckpt['optim_i'])
optim_t.load_state_dict(ckpt['optim_t'])
optim_v.load_state_dict(ckpt['optim_v'])
args.it = ckpt.get('it', -1)
args.epoch = ckpt.get('epoch', -1)
args.psnr_best = ckpt.get('psnr_best', -1)
del ckpt
else:
args.it = -1
args.epoch = -1
args.psnr_best = -float('inf')
os.makedirs(args.out_dir, exist_ok=True)
args.ckpt_dir = os.path.join(args.out_dir, 'ckpt')
os.makedirs(args.ckpt_dir, exist_ok=True)
args.log_dir = os.path.join(args.out_dir, 'logs')
os.makedirs(args.log_dir, exist_ok=True)
args.video_dir = os.path.join(args.out_dir, 'videos')
os.makedirs(args.video_dir, exist_ok=True)
print(f'args: {args}')
writer = SummaryWriter(log_dir=args.log_dir)
if args.open_tensorboard:
open_tensorboard(args.log_dir)
trainer = Trainer(args, generator, discriminator, inv_net, train_pose_params, val_pose_params,
optim_g, optim_d, optim_i, optim_t, optim_v,
scheduler_g, scheduler_d, scheduler_i, scheduler_t, scheduler_v,
train_loader, eval_loader, dynamic_patch_sampler, static_patch_sampler, full_img_sampler,
writer, device, it=args.it, epoch=args.epoch, psnr_best=args.psnr_best)
trainer.train()