-
Notifications
You must be signed in to change notification settings - Fork 99
/
Copy pathdecode.c
508 lines (428 loc) · 24 KB
/
decode.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
#include "correct/reed-solomon/encode.h"
// calculate all syndromes of the received polynomial at the roots of the generator
// because we're evaluating at the roots of the generator, and because the transmitted
// polynomial was made to be a product of the generator, we know that the transmitted
// polynomial is 0 at these roots
// any nonzero syndromes we find here are the values of the error polynomial evaluated
// at these roots, so these values give us a window into the error polynomial. if
// these syndromes are all zero, then we can conclude the error polynomial is also
// zero. if they're nonzero, then we know our message received an error in transit.
// returns true if syndromes are all zero
static bool reed_solomon_find_syndromes(field_t field, polynomial_t msgpoly, field_logarithm_t **generator_root_exp,
field_element_t *syndromes, size_t min_distance) {
bool all_zero = true;
memset(syndromes, 0, min_distance * sizeof(field_element_t));
for (unsigned int i = 0; i < min_distance; i++) {
// profiling reveals that this function takes about 50% of the cpu time of
// decoding. so, in order to speed it up a little, we precompute and save
// the successive powers of the roots of the generator, which are
// located in generator_root_exp
field_element_t eval = polynomial_eval_lut(field, msgpoly, generator_root_exp[i]);
if (eval) {
all_zero = false;
}
syndromes[i] = eval;
}
return all_zero;
}
// Berlekamp-Massey algorithm to find LFSR that describes syndromes
// returns number of errors and writes the error locator polynomial to rs->error_locator
static unsigned int reed_solomon_find_error_locator(correct_reed_solomon *rs, size_t num_erasures) {
unsigned int numerrors = 0;
memset(rs->error_locator.coeff, 0, (rs->min_distance + 1) * sizeof(field_element_t));
// initialize to f(x) = 1
rs->error_locator.coeff[0] = 1;
rs->error_locator.order = 0;
memcpy(rs->last_error_locator.coeff, rs->error_locator.coeff, (rs->min_distance + 1) * sizeof(field_element_t));
rs->last_error_locator.order = rs->error_locator.order;
field_element_t discrepancy;
field_element_t last_discrepancy = 1;
unsigned int delay_length = 1;
for (unsigned int i = rs->error_locator.order; i < rs->min_distance - num_erasures; i++) {
discrepancy = rs->syndromes[i];
for (unsigned int j = 1; j <= numerrors; j++) {
discrepancy = field_add(rs->field, discrepancy,
field_mul(rs->field, rs->error_locator.coeff[j], rs->syndromes[i - j]));
}
if (!discrepancy) {
// our existing LFSR describes the new syndrome as well
// leave it as-is but update the number of delay elements
// so that if a discrepancy occurs later we can eliminate it
delay_length++;
continue;
}
if (2 * numerrors <= i) {
// there's a discrepancy, but we still have room for more taps
// lengthen LFSR by one tap and set weight to eliminate discrepancy
// shift the last locator by the delay length, multiply by discrepancy,
// and divide by the last discrepancy
// we move down because we're shifting up, and this prevents overwriting
for (int j = rs->last_error_locator.order; j >= 0; j--) {
// the bounds here will be ok since we have a headroom of numerrors
rs->last_error_locator.coeff[j + delay_length] = field_div(
rs->field, field_mul(rs->field, rs->last_error_locator.coeff[j], discrepancy), last_discrepancy);
}
for (int j = delay_length - 1; j >= 0; j--) {
rs->last_error_locator.coeff[j] = 0;
}
// locator = locator - last_locator
// we will also update last_locator to be locator before this loop takes place
field_element_t temp;
for (int j = 0; j <= (rs->last_error_locator.order + delay_length); j++) {
temp = rs->error_locator.coeff[j];
rs->error_locator.coeff[j] =
field_add(rs->field, rs->error_locator.coeff[j], rs->last_error_locator.coeff[j]);
rs->last_error_locator.coeff[j] = temp;
}
unsigned int temp_order = rs->error_locator.order;
rs->error_locator.order = rs->last_error_locator.order + delay_length;
rs->last_error_locator.order = temp_order;
// now last_locator is locator before we started,
// and locator is (locator - (discrepancy/last_discrepancy) * x^(delay_length) * last_locator)
numerrors = i + 1 - numerrors;
last_discrepancy = discrepancy;
delay_length = 1;
continue;
}
// no more taps
// unlike the previous case, we are preserving last locator,
// but we'll update locator as before
// we're basically flattening the two loops from the previous case because
// we no longer need to update last_locator
for (int j = rs->last_error_locator.order; j >= 0; j--) {
rs->error_locator.coeff[j + delay_length] =
field_add(rs->field, rs->error_locator.coeff[j + delay_length],
field_div(rs->field, field_mul(rs->field, rs->last_error_locator.coeff[j], discrepancy),
last_discrepancy));
}
rs->error_locator.order = (rs->last_error_locator.order + delay_length > rs->error_locator.order)
? rs->last_error_locator.order + delay_length
: rs->error_locator.order;
delay_length++;
}
return rs->error_locator.order;
}
// find the roots of the error locator polynomial
// Chien search
bool reed_solomon_factorize_error_locator(field_t field, unsigned int num_skip, polynomial_t locator_log, field_element_t *roots,
field_logarithm_t **element_exp) {
// normally it'd be tricky to find all the roots
// but, the finite field is awfully finite...
// just brute force search across every field element
unsigned int root = num_skip;
memset(roots + num_skip, 0, (locator_log.order) * sizeof(field_element_t));
for (field_operation_t i = 0; i < 256; i++) {
// we make two optimizations here to help this search go faster
// a) we have precomputed the first successive powers of every single element
// in the field. we need at most n powers, where n is the largest possible
// degree of the error locator
// b) we have precomputed the error locator polynomial in log form, which
// helps reduce some lookups that would be done here
if (!polynomial_eval_log_lut(field, locator_log, element_exp[i])) {
roots[root] = (field_element_t)i;
root++;
}
}
// this is where we find out if we are have too many errors to recover from
// berlekamp-massey may have built an error locator that has 0 discrepancy
// on the syndromes but doesn't have enough roots
return root == locator_log.order + num_skip;
}
// use error locator and syndromes to find the error evaluator polynomial
void reed_solomon_find_error_evaluator(field_t field, polynomial_t locator, polynomial_t syndromes,
polynomial_t error_evaluator) {
// the error evaluator, omega(x), is S(x)*Lamba(x) mod x^(2t)
// where S(x) is a polynomial constructed from the syndromes
// S(1) + S(2)*x + ... + S(2t)*x(2t - 1)
// and Lambda(x) is the error locator
// the modulo is implicit here -- we have limited the max length of error_evaluator,
// which polynomial_mul will interpret to mean that it should not compute
// powers larger than that, which is the same as performing mod x^(2t)
polynomial_mul(field, locator, syndromes, error_evaluator);
}
// use error locator, error roots and syndromes to find the error values
// that is, the elements in the finite field which can be added to the received
// polynomial at the locations of the error roots in order to produce the
// transmitted polynomial
// forney algorithm
void reed_solomon_find_error_values(correct_reed_solomon *rs) {
// error value e(j) = -(X(j)^(1-c) * omega(X(j)^-1))/(lambda'(X(j)^-1))
// where X(j)^-1 is a root of the error locator, omega(X) is the error evaluator,
// lambda'(X) is the first formal derivative of the error locator,
// and c is the first consecutive root of the generator used in encoding
// first find omega(X), the error evaluator
// we generate S(x), the polynomial constructed from the roots of the syndromes
// this is *not* the polynomial constructed by expanding the products of roots
// S(x) = S(1) + S(2)*x + ... + S(2t)*x(2t - 1)
polynomial_t syndrome_poly;
syndrome_poly.order = rs->min_distance - 1;
syndrome_poly.coeff = rs->syndromes;
memset(rs->error_evaluator.coeff, 0, (rs->error_evaluator.order + 1) * sizeof(field_element_t));
reed_solomon_find_error_evaluator(rs->field, rs->error_locator, syndrome_poly, rs->error_evaluator);
// now find lambda'(X)
rs->error_locator_derivative.order = rs->error_locator.order - 1;
polynomial_formal_derivative(rs->field, rs->error_locator, rs->error_locator_derivative);
// calculate each e(j)
for (unsigned int i = 0; i < rs->error_locator.order; i++) {
if (rs->error_roots[i] == 0) {
continue;
}
rs->error_vals[i] = field_mul(
rs->field, field_pow(rs->field, rs->error_roots[i], rs->first_consecutive_root - 1),
field_div(
rs->field, polynomial_eval_lut(rs->field, rs->error_evaluator, rs->element_exp[rs->error_roots[i]]),
polynomial_eval_lut(rs->field, rs->error_locator_derivative, rs->element_exp[rs->error_roots[i]])));
}
}
void reed_solomon_find_error_locations(field_t field, field_logarithm_t generator_root_gap,
field_element_t *error_roots, field_logarithm_t *error_locations,
unsigned int num_errors, unsigned int num_skip) {
for (unsigned int i = 0; i < num_errors; i++) {
// the error roots are the reciprocals of the error locations, so div 1 by them
// we do mod 255 here because the log table aliases at index 1
// the log of 1 is both 0 and 255 (alpha^255 = alpha^0 = 1)
// for most uses it makes sense to have log(1) = 255, but in this case
// we're interested in a byte index, and the 255th index is not even valid
// just wrap it back to 0
if (error_roots[i] == 0) {
continue;
}
field_operation_t loc = field_div(field, 1, error_roots[i]);
for (field_operation_t j = 0; j < 256; j++) {
if (field_pow(field, j, generator_root_gap) == loc) {
error_locations[i] = field.log[j];
break;
}
}
}
}
// erasure method -- take given locations and convert to roots
// this is the inverse of reed_solomon_find_error_locations
static void reed_solomon_find_error_roots_from_locations(field_t field, field_logarithm_t generator_root_gap,
const field_logarithm_t *error_locations,
field_element_t *error_roots, unsigned int num_errors) {
for (unsigned int i = 0; i < num_errors; i++) {
field_element_t loc = field_pow(field, field.exp[error_locations[i]], generator_root_gap);
// field_element_t loc = field.exp[error_locations[i]];
error_roots[i] = field_div(field, 1, loc);
// error_roots[i] = loc;
}
}
// erasure method -- given the roots of the error locator, create the polynomial
static polynomial_t reed_solomon_find_error_locator_from_roots(field_t field, unsigned int num_errors,
field_element_t *error_roots,
polynomial_t error_locator,
polynomial_t *scratch) {
// multiply out roots to build the error locator polynomial
return polynomial_init_from_roots(field, num_errors, error_roots, error_locator, scratch);
}
// erasure method
static void reed_solomon_find_modified_syndromes(correct_reed_solomon *rs, field_element_t *syndromes, polynomial_t error_locator, field_element_t *modified_syndromes) {
polynomial_t syndrome_poly;
syndrome_poly.order = rs->min_distance - 1;
syndrome_poly.coeff = syndromes;
polynomial_t modified_syndrome_poly;
modified_syndrome_poly.order = rs->min_distance - 1;
modified_syndrome_poly.coeff = modified_syndromes;
polynomial_mul(rs->field, error_locator, syndrome_poly, modified_syndrome_poly);
}
void correct_reed_solomon_decoder_create(correct_reed_solomon *rs) {
rs->has_init_decode = true;
rs->syndromes = calloc(rs->min_distance, sizeof(field_element_t));
rs->modified_syndromes = calloc(2 * rs->min_distance, sizeof(field_element_t));
rs->received_polynomial = polynomial_create(rs->block_length - 1);
rs->error_locator = polynomial_create(rs->min_distance);
rs->error_locator_log = polynomial_create(rs->min_distance);
rs->erasure_locator = polynomial_create(rs->min_distance);
rs->error_roots = calloc(2 * rs->min_distance, sizeof(field_element_t));
rs->error_vals = malloc(rs->min_distance * sizeof(field_element_t));
rs->error_locations = malloc(rs->min_distance * sizeof(field_logarithm_t));
rs->last_error_locator = polynomial_create(rs->min_distance);
rs->error_evaluator = polynomial_create(rs->min_distance - 1);
rs->error_locator_derivative = polynomial_create(rs->min_distance - 1);
// calculate and store the first block_length powers of every generator root
// we would have to do this work in order to calculate the syndromes
// if we save it, we can prevent the need to recalculate it on subsequent calls
// total memory usage is min_distance * block_length bytes e.g. 32 * 255 ~= 8k
rs->generator_root_exp = malloc(rs->min_distance * sizeof(field_logarithm_t *));
for (unsigned int i = 0; i < rs->min_distance; i++) {
rs->generator_root_exp[i] = malloc(rs->block_length * sizeof(field_logarithm_t));
polynomial_build_exp_lut(rs->field, rs->generator_roots[i], rs->block_length - 1, rs->generator_root_exp[i]);
}
// calculate and store the first min_distance powers of every element in the field
// we would have to do this for chien search anyway, and its size is only 256 * min_distance bytes
// for min_distance = 32 this is 8k of memory, a pittance for the speedup we receive in exchange
// we also get to reuse this work during error value calculation
rs->element_exp = malloc(256 * sizeof(field_logarithm_t *));
for (field_operation_t i = 0; i < 256; i++) {
rs->element_exp[i] = malloc(rs->min_distance * sizeof(field_logarithm_t));
polynomial_build_exp_lut(rs->field, i, rs->min_distance - 1, rs->element_exp[i]);
}
rs->init_from_roots_scratch[0] = polynomial_create(rs->min_distance);
rs->init_from_roots_scratch[1] = polynomial_create(rs->min_distance);
}
ssize_t correct_reed_solomon_decode(correct_reed_solomon *rs, const uint8_t *encoded, size_t encoded_length,
uint8_t *msg) {
if (encoded_length > rs->block_length) {
return -1;
}
// the message is the non-remainder part
size_t msg_length = encoded_length - rs->min_distance;
// if they handed us a nonfull block, we'll write in 0s
size_t pad_length = rs->block_length - encoded_length;
if (!rs->has_init_decode) {
// initialize rs for decoding
correct_reed_solomon_decoder_create(rs);
}
// we need to copy to our local buffer
// the buffer we're given has the coordinates in the wrong direction
// e.g. byte 0 corresponds to the 254th order coefficient
// so we're going to flip and then write padding
// the final copied buffer will look like
// | rem (rs->min_distance) | msg (msg_length) | pad (pad_length) |
for (unsigned int i = 0; i < encoded_length; i++) {
rs->received_polynomial.coeff[i] = encoded[encoded_length - (i + 1)];
}
// fill the pad_length with 0s
for (unsigned int i = 0; i < pad_length; i++) {
rs->received_polynomial.coeff[i + encoded_length] = 0;
}
bool all_zero = reed_solomon_find_syndromes(rs->field, rs->received_polynomial, rs->generator_root_exp,
rs->syndromes, rs->min_distance);
if (all_zero) {
// syndromes were all zero, so there was no error in the message
// copy to msg and we are done
for (unsigned int i = 0; i < msg_length; i++) {
msg[i] = rs->received_polynomial.coeff[encoded_length - (i + 1)];
}
return msg_length;
}
unsigned int order = reed_solomon_find_error_locator(rs, 0);
// XXX fix this vvvv
rs->error_locator.order = order;
for (unsigned int i = 0; i <= rs->error_locator.order; i++) {
// this is a little strange since the coeffs are logs, not elements
// also, we'll be storing log(0) = 0 for any 0 coeffs in the error locator
// that would seem bad but we'll just be using this in chien search, and we'll skip all 0 coeffs
// (you might point out that log(1) also = 0, which would seem to alias. however, that's ok,
// because log(1) = 255 as well, and in fact that's how it's represented in our log table)
rs->error_locator_log.coeff[i] = rs->field.log[rs->error_locator.coeff[i]];
}
rs->error_locator_log.order = rs->error_locator.order;
if (!reed_solomon_factorize_error_locator(rs->field, 0, rs->error_locator_log, rs->error_roots, rs->element_exp)) {
// roots couldn't be found, so there were too many errors to deal with
// RS has failed for this message
return -1;
}
reed_solomon_find_error_locations(rs->field, rs->generator_root_gap, rs->error_roots, rs->error_locations,
rs->error_locator.order, 0);
reed_solomon_find_error_values(rs);
for (unsigned int i = 0; i < rs->error_locator.order; i++) {
rs->received_polynomial.coeff[rs->error_locations[i]] =
field_sub(rs->field, rs->received_polynomial.coeff[rs->error_locations[i]], rs->error_vals[i]);
}
for (unsigned int i = 0; i < msg_length; i++) {
msg[i] = rs->received_polynomial.coeff[encoded_length - (i + 1)];
}
return msg_length;
}
ssize_t correct_reed_solomon_decode_with_erasures(correct_reed_solomon *rs, const uint8_t *encoded,
size_t encoded_length, const uint8_t *erasure_locations,
size_t erasure_length, uint8_t *msg) {
if (!erasure_length) {
return correct_reed_solomon_decode(rs, encoded, encoded_length, msg);
}
if (encoded_length > rs->block_length) {
return -1;
}
if (erasure_length > rs->min_distance) {
return -1;
}
// the message is the non-remainder part
size_t msg_length = encoded_length - rs->min_distance;
// if they handed us a nonfull block, we'll write in 0s
size_t pad_length = rs->block_length - encoded_length;
if (!rs->has_init_decode) {
// initialize rs for decoding
correct_reed_solomon_decoder_create(rs);
}
// we need to copy to our local buffer
// the buffer we're given has the coordinates in the wrong direction
// e.g. byte 0 corresponds to the 254th order coefficient
// so we're going to flip and then write padding
// the final copied buffer will look like
// | rem (rs->min_distance) | msg (msg_length) | pad (pad_length) |
for (unsigned int i = 0; i < encoded_length; i++) {
rs->received_polynomial.coeff[i] = encoded[encoded_length - (i + 1)];
}
// fill the pad_length with 0s
for (unsigned int i = 0; i < pad_length; i++) {
rs->received_polynomial.coeff[i + encoded_length] = 0;
}
for (unsigned int i = 0; i < erasure_length; i++) {
// remap the coordinates of the erasures
rs->error_locations[i] = rs->block_length - (erasure_locations[i] + pad_length + 1);
}
reed_solomon_find_error_roots_from_locations(rs->field, rs->generator_root_gap, rs->error_locations,
rs->error_roots, erasure_length);
rs->erasure_locator =
reed_solomon_find_error_locator_from_roots(rs->field, erasure_length, rs->error_roots, rs->erasure_locator, rs->init_from_roots_scratch);
bool all_zero = reed_solomon_find_syndromes(rs->field, rs->received_polynomial, rs->generator_root_exp,
rs->syndromes, rs->min_distance);
if (all_zero) {
// syndromes were all zero, so there was no error in the message
// copy to msg and we are done
for (unsigned int i = 0; i < msg_length; i++) {
msg[i] = rs->received_polynomial.coeff[encoded_length - (i + 1)];
}
return msg_length;
}
reed_solomon_find_modified_syndromes(rs, rs->syndromes, rs->erasure_locator, rs->modified_syndromes);
field_element_t *syndrome_copy = malloc(rs->min_distance * sizeof(field_element_t));
memcpy(syndrome_copy, rs->syndromes, rs->min_distance * sizeof(field_element_t));
for (unsigned int i = erasure_length; i < rs->min_distance; i++) {
rs->syndromes[i - erasure_length] = rs->modified_syndromes[i];
}
unsigned int order = reed_solomon_find_error_locator(rs, erasure_length);
// XXX fix this vvvv
rs->error_locator.order = order;
for (unsigned int i = 0; i <= rs->error_locator.order; i++) {
// this is a little strange since the coeffs are logs, not elements
// also, we'll be storing log(0) = 0 for any 0 coeffs in the error locator
// that would seem bad but we'll just be using this in chien search, and we'll skip all 0 coeffs
// (you might point out that log(1) also = 0, which would seem to alias. however, that's ok,
// because log(1) = 255 as well, and in fact that's how it's represented in our log table)
rs->error_locator_log.coeff[i] = rs->field.log[rs->error_locator.coeff[i]];
}
rs->error_locator_log.order = rs->error_locator.order;
/*
for (unsigned int i = 0; i < erasure_length; i++) {
rs->error_roots[i] = field_div(rs->field, 1, rs->error_roots[i]);
}
*/
if (!reed_solomon_factorize_error_locator(rs->field, erasure_length, rs->error_locator_log, rs->error_roots, rs->element_exp)) {
// roots couldn't be found, so there were too many errors to deal with
// RS has failed for this message
free(syndrome_copy);
return -1;
}
polynomial_t temp_poly = polynomial_create(rs->error_locator.order + erasure_length);
polynomial_mul(rs->field, rs->erasure_locator, rs->error_locator, temp_poly);
polynomial_t placeholder_poly = rs->error_locator;
rs->error_locator = temp_poly;
reed_solomon_find_error_locations(rs->field, rs->generator_root_gap, rs->error_roots, rs->error_locations,
rs->error_locator.order, erasure_length);
memcpy(rs->syndromes, syndrome_copy, rs->min_distance * sizeof(field_element_t));
reed_solomon_find_error_values(rs);
for (unsigned int i = 0; i < rs->error_locator.order; i++) {
rs->received_polynomial.coeff[rs->error_locations[i]] =
field_sub(rs->field, rs->received_polynomial.coeff[rs->error_locations[i]], rs->error_vals[i]);
}
rs->error_locator = placeholder_poly;
for (unsigned int i = 0; i < msg_length; i++) {
msg[i] = rs->received_polynomial.coeff[encoded_length - (i + 1)];
}
polynomial_destroy(temp_poly);
free(syndrome_copy);
return msg_length;
}