-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgenerate_example_fig1.py
123 lines (94 loc) · 4.75 KB
/
generate_example_fig1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import numpy as np
from wd_sortof_fast_implementation import wd_from_ideal, dkw_ecdf_bounds
import json
import matplotlib.pyplot as plt
from qnewton import LBFGS
from tqdm import tqdm
import os
import seaborn as sns
sns.set()
def Q(fid_array, threshold):
return len(fid_array[fid_array >= threshold]) / len(fid_array)
def get_sd_results(spin: int =5, inspin: int =0, outspin: int =2,
bootreps: int = 100,
rlc_index: str = None,
noises=np.linspace(0,1,11)):
"""
Generate example area under the cdf average interpretation figures
"""
# remove 0
if abs(noises[0]-0) < 1e-7:
noises = noises[1:]
REPS = bootreps# boostrap reps
CONTROLLERS=100
results = json.load(open(f"noisy_analysis/lbfgs_spin_{spin}_{inspin}-{outspin}_in", "rb"))
results2 = json.load(open(f"noisy_analysis/ppo_spin_{spin}_{inspin}-{outspin}_in", "rb"))
assert len(results["lbfgs"].keys()) != 0 , "make sure you have the right qnewton file"
lbfgs_controllers = results["lbfgs"]
# results2 = json.load(open(f2, "rb"))
ppo_controllers = results2["ppo"]
keys = list(ppo_controllers.keys())
if not rlc_index:
rlc_index = keys[1] if spin!=6 else keys[0] # which controllers to look at
print([len(ppo_controllers[i]["controller"]) for i in keys])
env = LBFGS(spin, inspin, outspin)
print(f"file load: spin {spin} {inspin} -> {outspin} ==> all ok")
allfidsl = np.zeros((len(noises),CONTROLLERS, REPS))
allfidsp = np.zeros((len(noises),CONTROLLERS, REPS))
for j, noise in enumerate(tqdm(noises)):
print(noise)
fidsl=[]; fidsp = [];
for controller in range(CONTROLLERS):
env.noise = noise
fidsl=np.zeros(REPS); fidsp = np.zeros(REPS);
for i in range(REPS):
fidsl[i] = (env.fidelity_ss(lbfgs_controllers[str(spin)]["controller"][controller], ham_noisy=True)) # bootstrap
if controller < len(ppo_controllers[rlc_index]["controller"]):
fidsp[i] = (env.fidelity_ss(ppo_controllers[rlc_index]["controller"][controller], ham_noisy=True))
else:
fidsp[i]=np.nan
allfidsl[j][controller] = fidsl
allfidsp[j][controller] = fidsp
l_sortedi = np.argsort(fidsl)
p_sortedi = np.argsort(fidsp)
combined = np.concatenate((fidsl, fidsp))
combined.sort(kind="quicksort")
sortedfidsl = fidsl[l_sortedi]
sortedfidsp = fidsp[p_sortedi]
c_fd = sortedfidsl.searchsorted(combined[:-1], side="right") / fidsl.size
c_nfd = sortedfidsp.searchsorted(combined[:-1], side="right") / fidsp.size
discrete_cdfl = c_fd
discrete_cdfp = c_nfd
intervals = np.arange(c_fd.size) / c_fd.size # [1/N, ..., (N-1)/N]
discrete_cdfll, discrete_cdflu = dkw_ecdf_bounds(discrete_cdfl,conf_level=0.95)
discrete_cdfpl, discrete_cdfpu = dkw_ecdf_bounds(discrete_cdfp,conf_level=0.95)
# plt.style.use('grayscale')
plt.figure(figsize=(10,10))
rep1 = "; RIM={}"
plt.plot(intervals,discrete_cdfl,
label="$P^{(1)}_"+"{"+str(noise)+"}"+"(\mathcal{F}_1)$" + rep1.format(
round(wd_from_ideal(fidsl), 3)), linewidth=4, color="orange")
delta = np.zeros_like(intervals)
delta[-1] = 1
rep2 = "; RIM=0"
plt.plot(intervals, delta , color="green",
label=r"$P^{(\delta)}_"+"{"+str(noise)+"}"+"(\mathcal{F}_{\delta_1})$" + rep2, linewidth=4, linestyle="-.")
plt.plot(intervals,discrete_cdfp,
label="$P^{(2)}_"+"{"+str(noise)+"}"+"(\mathcal{F}_2)$" + rep1.format(round(wd_from_ideal(fidsp), 3)),
linewidth=4, color="blue")
plt.fill_between(intervals, discrete_cdfll, discrete_cdflu, color="orange", alpha=0.5)
plt.fill_between(intervals, discrete_cdfpl, discrete_cdfpu, color="blue", alpha=0.5)
plt.legend(fontsize=30, loc="upper right")
plt.xlim(0,1+0.01)
plt.xticks(fontsize=30)
plt.yticks(fontsize=30)
plt.ylabel(r"$P_" +"{"+str(noise)+"}"+"(\mathcal{F} \leq x)$", fontsize=30)
plt.xlabel(r"$x$", fontsize=30)
if not os.path.exists("example_cdf_area_figs"):
os.mkdir("example_cdf_area_figs")
plt.savefig("example_cdf_area_figs/examplefig_Ver2{}.pdf".format(np.random.randint(0, int(1e9))), dpi=800)
if __name__ == '__main__':
br=100
qthresholds=0.95
sns.set()
x = get_sd_results(bootreps=br, outspin=2, spin=5, noises=[0.1])