-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprepare_data.py
60 lines (50 loc) · 1.72 KB
/
prepare_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
"""
Modified from: https://github.com/facebookresearch/SparseConvNet/blob/master/examples/ScanNet/prepare_data.py
Prepare .pth file which stores [(xyz), (rgb), (semantic label), (instance label)]
"""
import glob, plyfile, numpy as np, multiprocessing as mp, torch, json, os
# Map relevant classes to {0,1,...,19}, and ignored classes to -100
remapper=np.ones(150)*(-100)
for i,x in enumerate([1,2,3,4,5,6,7,8,9,10,11,12,14,16,24,28,33,34,36,39]):
remapper[x]=i
files=sorted(glob.glob('.../scannet_data/scans/*/*_vh_clean_2.ply'))
#Destined data directory
DIR = '.../preprocessed_scannet/'
if not os.path.exists(DIR):
os.makedirs(DIR)
def read_aggre(name):
f = open(name, 'r')
results = {}
d = json.load(f)
l = d['segGroups']
for i in l:
for s in i['segments']:
results[s] = i['id']
return results
def read_segs(name, aggregation):
f = open(name, 'r')
d = json.load(f)
indices = np.array(d['segIndices'])
results = np.zeros_like(indices) - 1
for i in aggregation:
m = indices == i
results[m] = aggregation[i]
return results
def f(fn):
fn2 = fn[:-3]+'labels.ply'
aggre_fn = fn[:-15]+'.aggregation.json'
segs_fn = fn[:-3]+'0.010000.segs.json'
a=plyfile.PlyData().read(fn)
v=np.array([list(x) for x in a.elements[0]])
coords=np.ascontiguousarray(v[:,:3]-v[:,:3].mean(0))
colors=np.ascontiguousarray(v[:,3:6])/127.5-1
a=plyfile.PlyData().read(fn2)
w=remapper[np.array(a.elements[0]['label'])]
ins = read_segs(segs_fn, read_aggre(aggre_fn))
name=fn.split('/')[-1][0:12]
torch.save((coords,colors,w,ins),DIR+name+'.pth')
print(name, 'done')
p = mp.Pool(processes=mp.cpu_count())
p.map(f,files)
p.close()
p.join()