-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspeaker_verification_plda.py
375 lines (305 loc) · 12.3 KB
/
speaker_verification_plda.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
#!/usr/bin/python3
"""Recipe for training a speaker verification system based on PLDA using the voxceleb dataset.
The system employs a pre-trained model followed by a PLDA transformation.
The pre-trained model is automatically downloaded from the web if not specified.
To run this recipe, run the following command:
> python speaker_verification_plda.py hyperparams/verification_plda_xvector.yaml
Authors
* Nauman Dawalatabad 2020
* Mirco Ravanelli 2020
"""
import os
import sys
import torch
import torchaudio
import logging
import speechbrain as sb
import numpy
import pickle
from tqdm.contrib import tqdm
from hyperpyyaml import load_hyperpyyaml
from speechbrain.utils.metric_stats import EER, minDCF
from speechbrain.processing.PLDA_LDA import StatObject_SB
from speechbrain.processing.PLDA_LDA import Ndx
from speechbrain.processing.PLDA_LDA import fast_PLDA_scoring
from speechbrain.utils.data_utils import download_file
from speechbrain.utils.distributed import run_on_main
# Compute embeddings from the waveforms
def compute_embeddings(wavs, wav_lens):
"""Compute speaker embeddings.
Arguments
---------
wavs : Torch.Tensor
Tensor containing the speech waveform (batch, time).
Make sure the sample rate is fs=16000 Hz.
wav_lens: Torch.Tensor
Tensor containing the relative length for each sentence
in the length (e.g., [0.8 0.6 1.0])
"""
wavs = wavs.to(params["device"])
wav_lens = wav_lens.to(params["device"])
with torch.no_grad():
feats = params["compute_features"](wavs)
feats = params["mean_var_norm"](feats, wav_lens)
embeddings = params["embedding_model"](feats, wav_lens)
embeddings = params["mean_var_norm_emb"](
embeddings, torch.ones(embeddings.shape[0]).to(embeddings.device)
)
return embeddings.squeeze(1)
def emb_computation_loop(split, set_loader, stat_file):
"""Computes the embeddings and saves the in a stat file"""
# Extract embeddings (skip if already done)
if not os.path.isfile(stat_file):
embeddings = numpy.empty(
shape=[0, params["emb_dim"]], dtype=numpy.float64
)
modelset = []
segset = []
with tqdm(set_loader, dynamic_ncols=True) as t:
for batch in t:
ids = batch.id
wavs, lens = batch.sig
mod = [x for x in ids]
seg = [x for x in ids]
modelset = modelset + mod
segset = segset + seg
# Enrollment and test embeddings
embs = compute_embeddings(wavs, lens)
xv = embs.squeeze().cpu().numpy()
embeddings = numpy.concatenate((embeddings, xv), axis=0)
modelset = numpy.array(modelset, dtype="|O")
segset = numpy.array(segset, dtype="|O")
# Intialize variables for start, stop and stat0
s = numpy.array([None] * embeddings.shape[0])
b = numpy.array([[1.0]] * embeddings.shape[0])
# Stat object (used to collect embeddings)
stat_obj = StatObject_SB(
modelset=modelset,
segset=segset,
start=s,
stop=s,
stat0=b,
stat1=embeddings,
)
logger.info(f"Saving stat obj for {split}")
stat_obj.save_stat_object(stat_file)
else:
logger.info(f"Skipping embedding Extraction for {split}")
logger.info(f"Loading previously saved stat_object for {split}")
with open(stat_file, "rb") as input:
stat_obj = pickle.load(input)
return stat_obj
def verification_performance(scores_plda):
"""Computes the Equal Error Rate give the PLDA scores"""
# Create ids, labels, and scoring list for EER evaluation
ids = []
labels = []
positive_scores = []
negative_scores = []
for line in open(veri_file_path):
lab = int(line.split(" ")[0].rstrip().split(".")[0].strip())
enrol_id = line.split(" ")[1].rstrip().split(".")[0].strip()
test_id = line.split(" ")[2].rstrip().split(".")[0].strip()
# Assuming enrol_id and test_id are unique
i = int(numpy.where(scores_plda.modelset == enrol_id)[0][0])
j = int(numpy.where(scores_plda.segset == test_id)[0][0])
s = float(scores_plda.scoremat[i, j])
labels.append(lab)
ids.append(enrol_id + "<>" + test_id)
if lab == 1:
positive_scores.append(s)
else:
negative_scores.append(s)
# Clean variable
del scores_plda
# Final EER computation
eer, th = EER(torch.tensor(positive_scores), torch.tensor(negative_scores))
min_dcf, th = minDCF(
torch.tensor(positive_scores), torch.tensor(negative_scores)
)
return eer, min_dcf
# Function to get mod and seg
def get_utt_ids_for_test(ids, data_dict):
mod = [data_dict[x]["wav1"]["data"] for x in ids]
seg = [data_dict[x]["wav2"]["data"] for x in ids]
return mod, seg
def dataio_prep(params):
"Creates the dataloaders and their data processing pipelines."
data_folder = params["data_folder"]
# 1. Declarations:
# Train data (used for normalization)
train_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
csv_path=params["train_data"], replacements={"data_root": data_folder},
)
train_data = train_data.filtered_sorted(
sort_key="duration", select_n=params["n_train_snts"]
)
# Enrol data
enrol_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
csv_path=params["enrol_data"], replacements={"data_root": data_folder},
)
enrol_data = enrol_data.filtered_sorted(sort_key="duration")
# Test data
test_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
csv_path=params["test_data"], replacements={"data_root": data_folder},
)
test_data = test_data.filtered_sorted(sort_key="duration")
datasets = [train_data, enrol_data, test_data]
# 2. Define audio pipeline:
@sb.utils.data_pipeline.takes("wav", "start", "stop")
@sb.utils.data_pipeline.provides("sig")
def audio_pipeline(wav, start, stop):
start = int(start)
stop = int(stop)
num_frames = stop - start
sig, fs = torchaudio.load(
wav, num_frames=num_frames, frame_offset=start
)
sig = sig.transpose(0, 1).squeeze(1)
return sig
sb.dataio.dataset.add_dynamic_item(datasets, audio_pipeline)
# 3. Set output:
sb.dataio.dataset.set_output_keys(datasets, ["id", "sig", "spk_id"])
# 4 Create dataloaders
train_dataloader = sb.dataio.dataloader.make_dataloader(
train_data, **params["train_dataloader_opts"]
)
enrol_dataloader = sb.dataio.dataloader.make_dataloader(
enrol_data, **params["enrol_dataloader_opts"]
)
test_dataloader = sb.dataio.dataloader.make_dataloader(
test_data, **params["test_dataloader_opts"]
)
return train_dataloader, enrol_dataloader, test_dataloader
if __name__ == "__main__":
# Logger setup
logger = logging.getLogger(__name__)
current_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.dirname(current_dir))
# Load hyperparameters file with command-line overrides
params_file, run_opts, overrides = sb.core.parse_arguments(sys.argv[1:])
with open(params_file) as fin:
params = load_hyperpyyaml(fin, overrides)
# Download verification list (to exlude verification sentences from train)
veri_file_path = os.path.join(
params["save_folder"], os.path.basename(params["verification_file"])
)
download_file(params["verification_file"], veri_file_path)
from voxceleb_prepare import prepare_voxceleb # noqa E402
# Create experiment directory
sb.core.create_experiment_directory(
experiment_directory=params["output_folder"],
hyperparams_to_save=params_file,
overrides=overrides,
)
# Prepare data from dev of Voxceleb1
logger.info("Data preparation")
prepare_voxceleb(
data_folder=params["data_folder"],
save_folder=params["save_folder"],
verification_pairs_file=veri_file_path,
splits=["train", "test"],
split_ratio=[90, 10],
seg_dur=3,
)
# here we create the datasets objects as well as tokenization and encoding
train_dataloader, enrol_dataloader, test_dataloader = dataio_prep(params)
# Initialize PLDA vars
modelset, segset = [], []
embeddings = numpy.empty(shape=[0, params["emb_dim"]], dtype=numpy.float64)
# Embedding file for train data
xv_file = os.path.join(
params["save_folder"], "VoxCeleb1_train_embeddings_stat_obj.pkl"
)
# We download the pretrained LM from HuggingFace (or elsewhere depending on
# the path given in the YAML file). The tokenizer is loaded at the same time.
run_on_main(params["pretrainer"].collect_files)
params["pretrainer"].load_collected()
params["embedding_model"].eval()
params["embedding_model"].to(params["device"])
# Computing training embeddings (skip it of if already extracted)
if not os.path.exists(xv_file):
logger.info("Extracting embeddings from Training set..")
with tqdm(train_dataloader, dynamic_ncols=True) as t:
for batch in t:
snt_id = batch.id
wav, lens = batch.sig
spk_ids = batch.spk_id
# Flattening speaker ids
modelset = modelset + spk_ids
# For segset
segset = segset + snt_id
# Compute embeddings
emb = compute_embeddings(wav, lens)
xv = emb.squeeze(1).cpu().numpy()
embeddings = numpy.concatenate((embeddings, xv), axis=0)
# Speaker IDs and utterance IDs
modelset = numpy.array(modelset, dtype="|O")
segset = numpy.array(segset, dtype="|O")
# Intialize variables for start, stop and stat0
s = numpy.array([None] * embeddings.shape[0])
b = numpy.array([[1.0]] * embeddings.shape[0])
embeddings_stat = StatObject_SB(
modelset=modelset,
segset=segset,
start=s,
stop=s,
stat0=b,
stat1=embeddings,
)
del embeddings
# Save TRAINING embeddings in StatObject_SB object
embeddings_stat.save_stat_object(xv_file)
else:
# Load the saved stat object for train embedding
logger.info("Skipping embedding Extraction for training set")
logger.info(
"Loading previously saved stat_object for train embeddings.."
)
with open(xv_file, "rb") as input:
embeddings_stat = pickle.load(input)
# Training Gaussian PLDA model
logger.info("Training PLDA model")
params["compute_plda"].plda(embeddings_stat)
logger.info("PLDA training completed")
# Set paths for enrol/test embeddings
enrol_stat_file = os.path.join(params["save_folder"], "stat_enrol.pkl")
test_stat_file = os.path.join(params["save_folder"], "stat_test.pkl")
ndx_file = os.path.join(params["save_folder"], "ndx.pkl")
# Compute enrol and Test embeddings
enrol_obj = emb_computation_loop("enrol", enrol_dataloader, enrol_stat_file)
test_obj = emb_computation_loop("test", test_dataloader, test_stat_file)
# Prepare Ndx Object
if not os.path.isfile(ndx_file):
models = enrol_obj.modelset
testsegs = test_obj.modelset
logger.info("Preparing Ndx")
ndx_obj = Ndx(models=models, testsegs=testsegs)
logger.info("Saving ndx obj...")
ndx_obj.save_ndx_object(ndx_file)
else:
logger.info("Skipping Ndx preparation")
logger.info("Loading Ndx from disk")
with open(ndx_file, "rb") as input:
ndx_obj = pickle.load(input)
# PLDA scoring
logger.info("PLDA scoring...")
scores_plda = fast_PLDA_scoring(
enrol_obj,
test_obj,
ndx_obj,
params["compute_plda"].mean,
params["compute_plda"].F,
params["compute_plda"].Sigma,
)
logger.info("Computing EER... ")
# Cleaning variable
del enrol_dataloader
del test_dataloader
del enrol_obj
del test_obj
del embeddings_stat
# Final EER computation
eer, min_dcf = verification_performance(scores_plda)
logger.info("EER(%%)=%f", eer * 100)
logger.info("min_dcf=%f", min_dcf * 100)