-
Notifications
You must be signed in to change notification settings - Fork 91
/
Copy pathvalidation.py
73 lines (56 loc) · 2.02 KB
/
validation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# from http://bytefish.de/blog/validating_algorithms
import os
import sys
import cv2
import numpy as np
from sklearn.base import BaseEstimator
from sklearn import cross_validation as cval
from sklearn.metrics import precision_score
import opencv
def read_images(path, sz=None):
"""Reads the images in a given folder, resizes images on the fly if size is given.
Args:
path: Path to a folder with subfolders representing the subjects (persons).
sz: A tuple with the size Resizes
Returns:
A list [X,y]
X: The images, which is a Python list of numpy arrays.
y: The corresponding labels (the unique number of the subject, person) in a Python list.
"""
c = 0
X,y = [], []
for dirname, dirnames, filenames in os.walk(path):
for subdirname in dirnames:
subjectPath = os.path.join(dirname, subdirname)
for filename in os.listdir(subjectPath):
try:
img = cv2.imread(os.path.join(subjectPath, filename), cv2.IMREAD_GRAYSCALE)
if sz is not None:
img = cv2.resize(img, sz)
X.append(np.asarray(img, dtype=np.uint8))
y.append(c)
except IOError, (errno, strerror):
print "IOError({0}): {1}".format(errno, strerror)
except:
print "Unexpected error:" , sys.exc_info()[0]
raise
c += 1
return [X,y]
class FaceRecognizer(BaseEstimator):
def __init__(self):
#self.model = model
#self.model = cv2.createFisherFaceRecognizer()
self.model = cv2.createEigenFaceRecognizer()
def fit(self, X, y):
self.model.train(X, y)
def predict(self, T):
return [self.model.predict(T[i]) for i in range(0, T.shape[0])]
if __name__ == "__main__":
#[X, y] = read_images(sys.argv[1], (100,100))
[X, y] = opencv.load_images_from_db()
y = np.asarray(y, dtype=np.int32)
cv = cval.StratifiedKFold(y, 10)
estimator = FaceRecognizer()
precision_scores = cval.cross_val_score(estimator, X, y, score_func=precision_score, cv=cv)
print precision_scores
print sum(precision_scores)/len(precision_scores)