-
-
Notifications
You must be signed in to change notification settings - Fork 317
/
Copy pathFirstCommonAncestor.java
103 lines (92 loc) · 4.01 KB
/
FirstCommonAncestor.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
package com.ctci.treesandgraphs;
/**
* Design an algorithm and write code to find the first common ancestor of two nodes in a binary
* tree. Avoid storing additional nodes in a data structure. Also, for this question, the tree node
* does NOT have access to its parent node. NOTE: This is not necessarily a binary search tree.
*
* First Common Ancestor or the Least/Lowest Common Ancestor of two nodes is a node which is the
* closest to both of the nodes.
*
* @author rampatra
* @since 2019-02-24
*/
public class FirstCommonAncestor {
/**
* We recurse through the entire tree with a function called findFCA(TreeNode root, TreeNode TreeNode a, TreeNode b).
* This function returns values as follows:
* - Returns p, if root's subtree includes p (and not q).
* - Returns q, if root's subtree includes q (and not p).
* - Returns null, if neither p nor q are in root's subtree.
* - Else, returns the common ancestor of p and q.
* <p>
* See {@link com.rampatra.trees.LeastCommonAncestorInBT} for a better answer.
*
* @param root
* @param a
* @param b
* @return the least common ancestor node
*/
private static TreeNode findFCA(TreeNode root, TreeNode a, TreeNode b) {
if (root == null) { // validation
return null;
}
if (root == a && root == b) { // optimization
return root;
}
TreeNode left = findFCA(root.left, a, b);
if (left != null && left != a && left != b) {
return left;
}
TreeNode right = findFCA(root.right, a, b);
if (right != null && right != a && right != b) {
return right;
}
/* One node is found on the left subtree and other on the
right one. This means current node is the ancestor. */
if (left != null && right != null) {
return root;
} else if (root == a || root == b) {
return root;
} else {
return left == null ? right : left;
}
}
private static class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode(int val) {
this.val = val;
}
}
public static void main(String[] args) {
/*
The binary tree looks like:
4
/ \
5 8
/ \ / \
1 3 2 9
/ \
0 7
*/
TreeNode treeRoot = new TreeNode(4);
treeRoot.left = new TreeNode(5);
treeRoot.right = new TreeNode(8);
treeRoot.left.left = new TreeNode(1);
treeRoot.left.right = new TreeNode(3);
treeRoot.left.left.left = new TreeNode(0);
treeRoot.right.left = new TreeNode(2);
treeRoot.right.right = new TreeNode(9);
treeRoot.right.left.right = new TreeNode(7);
System.out.println("FCA of 0 and 7 is: " + findFCA(treeRoot, treeRoot.left.left.left, treeRoot.right.left.right).val);
System.out.println("FCA of 0 and 9 is: " + findFCA(treeRoot, treeRoot.left.left.left, treeRoot.right.right).val);
System.out.println("FCA of 0 and 1 is: " + findFCA(treeRoot, treeRoot.left.left.left, treeRoot.left.left).val);
System.out.println("FCA of 1 and 2 is: " + findFCA(treeRoot, treeRoot.left.left, treeRoot.right.left).val);
System.out.println("FCA of 1 and 7 is: " + findFCA(treeRoot, treeRoot.left.left, treeRoot.right.left.right).val);
System.out.println("FCA of 4 and 7 is: " + findFCA(treeRoot, treeRoot, treeRoot.right.left.right).val);
System.out.println("FCA of 5 and 2 is: " + findFCA(treeRoot, treeRoot.left, treeRoot.right.left).val);
System.out.println("FCA of 7 and 9 is: " + findFCA(treeRoot, treeRoot.right.left.right, treeRoot.right.right).val);
System.out.println("FCA of 7 and 10 is: " + findFCA(treeRoot, treeRoot.right.left.right, new TreeNode(10)).val); // this use case does not work with the above algorithm
}
}