-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathtrain.py
307 lines (272 loc) · 12.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import argparse
import json
import os
import time
import numpy as np
import torch
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
import data
import models
from data import TrainSplit, EvaluateSplit
parser = argparse.ArgumentParser(description='video features to LSTM Language Model')
# Location of data
parser.add_argument('--dataset', type=str, default='ActivityNet',
help='Name of the data class to use from data.py')
parser.add_argument('--data', type=str, default='data/ActivityNet/activity_net.v1-3.min.json',
help='location of the dataset')
parser.add_argument('--features', type=str, default='data/ActivityNet/sub_activitynet_v1-3.c3d.hdf5',
help='location of the video features')
parser.add_argument('--labels', type=str, default='data/ActivityNet/labels.hdf5',
help='location of the proposal labels')
parser.add_argument('--vid-ids', type=str, default='data/ActivityNet/video_ids.json',
help='location of the video ids')
parser.add_argument('--save', type=str, default='data/models/default',
help='path to folder where to save the final model and log files and corpus')
parser.add_argument('--save-every', type=int, default=1,
help='Save the model every x epochs')
parser.add_argument('--clean', dest='clean', action='store_true',
help='Delete the models and the log files in the folder')
parser.add_argument('--W', type=int, default=128,
help='The rnn kernel size to use to get the proposal features')
parser.add_argument('--K', type=int, default=64,
help='Number of proposals')
parser.add_argument('--max-W', type=int, default=256,
help='maximum number of windows to return per video')
# Model options
parser.add_argument('--rnn-type', type=str, default='GRU',
help='type of recurrent net (RNN_TANH, RNN_RELU, LSTM, GRU)')
parser.add_argument('--rnn-num-layers', type=int, default=2,
help='Number of layers in rnn')
parser.add_argument('--rnn-dropout', type=int, default=0.0,
help='dropout used in rnn')
parser.add_argument('--video-dim', type=int, default=500,
help='dimensions of video (C3D) features')
parser.add_argument('--hidden-dim', type=int, default=512,
help='dimensions output layer of video network')
# Training options
parser.add_argument('--lr', type=float, default=0.1,
help='initial learning rate')
parser.add_argument('--dropout', type=float, default=0.0,
help='dropout between RNN layers')
parser.add_argument('--momentum', type=float, default=0.9,
help='SGD momentum')
parser.add_argument('--weight-decay', type=float, default=0,
help='SGD weight decay')
parser.add_argument('--epochs', type=int, default=100,
help='upper epoch limit')
parser.add_argument('--batch-size', type=int, default=20,
help='batch size')
parser.add_argument('--seed', type=int, default=1111,
help='random seed')
parser.add_argument('--cuda', action='store_true',
help='use CUDA')
parser.add_argument('--log-interval', type=int, default=100, metavar='N',
help='report interval')
parser.add_argument('--debug', dest='debug', action='store_true',
help='Print out debug sentences')
parser.add_argument('--num-samples', type=int, default=None,
help='Number of training samples to train with')
parser.add_argument('--shuffle', type=int, default=1,
help='whether to shuffle the data')
parser.add_argument('--nthreads', type=int, default=1,
help='number of worker threas used to load data')
parser.add_argument('--resume', dest='resume', action='store_true',
help='reload the model')
# Evaluate options
parser.add_argument('--num-vids-eval', type=int, default=500,
help='Number of videos to evaluate at each pass')
parser.add_argument('--iou-threshold', type=float, default=0.5,
help='threshold above which we say something is positive')
parser.add_argument('--num-proposals', type=int, default=None,
help='number of top proposals to evaluate')
args = parser.parse_args()
# Ensure that the kernel for RNN is greated than the number of proposals
assert (args.W > args.K)
# Check if directory exists and create one if it doesn't:
if not os.path.isdir(args.save):
os.makedirs(args.save)
# Argument hack
args.shuffle = args.shuffle != 0
# Clean the directory
if args.clean:
for f in ['model.pth', 'train.log', 'val.log', 'test.log']:
try:
os.remove(os.path.join(args.save, f))
except:
continue
# Set the random seed manually for reproducibility.
torch.manual_seed(args.seed)
if torch.cuda.is_available():
if not args.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
else:
torch.cuda.manual_seed(args.seed)
elif args.cuda:
raise Exception("No GPU found, please run without --cuda")
# Save the arguments for future viewing
with open(os.path.join(args.save, 'args.json'), 'w') as f:
f.write(json.dumps(vars(args)))
###############################################################################
# Load data
###############################################################################
print "| Loading data into corpus: %s" % args.data
dataset = getattr(data, args.dataset)(args)
w1 = dataset.w1
train_dataset = TrainSplit(dataset.training_ids, dataset, args)
val_dataset = EvaluateSplit(dataset.validation_ids, dataset, args)
train_val_dataset = EvaluateSplit(dataset.training_ids, dataset, args)
print "| Dataset created"
train_loader = DataLoader(train_dataset, shuffle=args.shuffle, batch_size=args.batch_size, num_workers=args.nthreads,
collate_fn=train_dataset.collate_fn)
train_evaluator = DataLoader(train_val_dataset, shuffle=args.shuffle, batch_size=1, num_workers=args.nthreads,
collate_fn=val_dataset.collate_fn)
val_evaluator = DataLoader(val_dataset, shuffle=args.shuffle, batch_size=1, num_workers=args.nthreads,
collate_fn=val_dataset.collate_fn)
print "| Data Loaded: # training data: %d, # val data: %d" % (len(train_loader) * args.batch_size, len(val_evaluator))
###############################################################################
# Build the model
###############################################################################
if args.resume:
model = torch.load(os.path.join(args.save, 'model.pth'))
else:
model = models.SST(
video_dim=args.video_dim,
hidden_dim=args.hidden_dim,
dropout=args.dropout,
W=args.W,
K=args.K,
rnn_type=args.rnn_type,
rnn_num_layers=args.rnn_num_layers,
rnn_dropout=args.rnn_dropout,
)
if args.cuda:
model.cuda()
###############################################################################
# Training code
###############################################################################
def iou(interval, featstamps, return_index=False):
start_i, end_i = interval[0], interval[1]
output = 0.0
gt_index = -1
for i, (start, end) in enumerate(featstamps):
intersection = max(0, min(end, end_i) - max(start, start_i))
union = min(max(end, end_i) - min(start, start_i), end - start + end_i - start_i)
overlap = float(intersection) / (union + 1e-8)
if overlap >= output:
output = overlap
gt_index = i
if return_index:
return output, gt_index
return output
def proposals_to_timestamps(proposals, duration, num_proposals):
# if num_proposals is None, extract all possible proposals
_, nb_steps, K = proposals.size()
if num_proposals and num_proposals < nb_steps * K:
# keep only top num_proposals proposals
sort, _ = proposals.view(nb_steps * K).sort()
score_threshold = sort[-num_proposals]
proposals = proposals >= score_threshold
step_length = duration / nb_steps
timestamps = []
for time_step in np.arange(nb_steps):
p = proposals[0, time_step]
if p.sum() != 0: # ie we have non zero score at this step
end = time_step * step_length
for k in np.arange(K):
if p[k] != 0:
start = max(0, time_step - k - 1) * step_length
timestamps.append((start, end))
return timestamps
def calculate_stats(proposals, gt_times, duration, args):
timestamps = proposals_to_timestamps(proposals.data, duration, args.num_proposals)
gt_detected = np.zeros(len(gt_times))
for i, timestamp in enumerate(timestamps):
iou_i, k = iou(timestamp, gt_times, return_index=True)
if iou_i > args.iou_threshold:
gt_detected[k] = 1
return gt_detected.sum()*1./len(gt_detected)
def evaluate(data_loader, maximum=None):
model.eval()
total = len(data_loader)
if maximum is not None:
total = min(total, maximum)
recall = np.zeros(total)
for batch_idx, (features, gt_times, duration) in enumerate(data_loader):
if maximum is not None and batch_idx >= maximum:
break
if args.cuda:
features = features.cuda()
features = Variable(features)
proposals = model(features)
recall[batch_idx] = calculate_stats(proposals, gt_times, duration, args)
return np.mean(recall)
def train(epoch, w1):
model.train()
total_loss = []
model.train()
start_time = time.time()
for batch_idx, (features, masks, labels) in enumerate(train_loader):
if args.cuda:
features = features.cuda()
labels = labels.cuda()
masks = masks.cuda()
features = Variable(features)
optimizer.zero_grad()
proposals = model(features)
loss = model.compute_loss_with_BCE(proposals, masks, labels, w1)
loss.backward()
optimizer.step()
# ratio of weights updates to debug
# for group in optimizer.param_groups:
# for p in group['params']:
# print "ratio of weights update "
# print p.grad.div(p).mean().data
total_loss.append(loss.data[0])
# Debugging training samples
if args.debug:
recall = evaluate(train_evaluator, maximum=args.num_vids_eval)
log_entry = ('| train recall@{}-iou={}: {:2.4f}\%'.format(args.num_proposals, args.iou_threshold, recall))
print log_entry
# Print out training loss every interval in the batch
if batch_idx % args.log_interval == 0: # and batch_idx > 0:
cur_loss = total_loss[-1]
elapsed = time.time() - start_time
log_entry = '| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.4f} | ms/batch {:5.2f} | ' \
'loss {:5.6f}'.format(
epoch, batch_idx, len(train_loader), args.lr,
elapsed * 1000 / args.log_interval, cur_loss * 1000)
print log_entry
with open(os.path.join(args.save, 'train.log'), 'a') as f:
f.write(log_entry)
f.write('\n')
start_time = time.time()
# Loop over epochs.
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
for epoch in range(1, args.epochs + 1):
epoch_start_time = time.time()
train(epoch, w1)
recall = evaluate(val_evaluator, maximum=args.num_vids_eval)
print('-' * 89)
log_entry = ('| end of epoch {:3d} | time: {:5.2f}s | val recall@{}-iou={}: {:2.2f}\%'.format(
epoch, (time.time() - epoch_start_time), args.num_proposals, args.iou_threshold, recall))
print log_entry
print('-' * 89)
with open(os.path.join(args.save, 'val.log'), 'a') as f:
f.write(log_entry)
f.write('\n')
if args.save != '' and epoch % args.save_every == 0 and epoch > 0:
torch.save(model, os.path.join(args.save, 'model_' + str(epoch) + '.pth'))
# Run on test data and save the model.
# This is not needed now since test videos have no proposals
# print "| Testing model on test set"
# test_dataset = EvaluateSplit(dataset.testing_ids, dataset, args)
# test_evaluator = DataLoader(test_dataset, shuffle=args.shuffle, batch_size=1, num_workers=args.nthreads, collate_fn=test_dataset.collate_fn)
# test_precision, test_recall = evaluate(test_evaluator)
# print('=' * 89)
# print('| End of training | test precision {:2.2f}\% | test recall {:2.2f}\%'.format(
# test_precision, test_recall))
# print('=' * 89)
# if args.save != '':
# torch.save(model, os.path.join(args.save, 'model.pth'))